过河问题
题目描述
n个人想要过一条河,河上只有一条小船,这条船只能容纳两个人,因此这n个人想要全部过河的话就必须来回很多次.每个人划船的速度有所不同,两个人一起的时候船的速度是划得较慢的人的速度.请你找出一种策略使得他们在尽可能短的时间内过河.
关于输入
第一行包括一个正整数t,表示有t组数据.
每组数据两行,第一行是人数n(n<=1000),第二行是n个人各自过河所需的时间(不大于100).
关于输出
输出最短时间
例子输入
1 4 1 2 5 10
例子输出
17
解题分析
只有一艘船,这么多人怎么过去呢?而且还要保证时间最短,这个时候,也许大家很快就能想到,我们应该让划船划得最快的人充当苦力,这样可以保证船回来的时候花的时间最短,然而,如果每次都让划船划得最快的人上船,总时间一定最短吗?其实不然,因为在此问题中,我们可以发现,“每个人划船的速度有所不同,两个人一起的时候船的速度是划得较慢的人的速度.” 所以,如果我们有比较多的划船划的很慢的人,这个时候,我们应该利用这个规则,让他们两个一起过河,最大程度的减少时间。举个例子,四个人,划船速度分别为1 2 9999 9999,我们先让 1 2 一起过河,然后让1划船回来,接着让 3 4 划船过河,然后让2划船回来再带1回去,显然,这样的话9999我们就只要算一次了,怎么想都是赚!所以,我们总结出两个原则:1.时间最短原则 让最快的人每次都划船充当苦力;2.不浪费原则 让相近划船时间的两人一起过河。这两个就是划船问题的最优策略,这样,我们每次都执行这两个原则,每次都能让最慢的两个人送过河。
代码实现
#include <bits/stdc++.h>
using namespace std;
int main(){
int t; cin>>t;
while(t--){
int n; cin>>n;
int a[n];
for(int i=0;i<n;i++){
cin>>a[i];
}
if(n==1){
cout<<a[0]<<endl;
continue;
}
sort(a,a+n); int t1,t2;
int result=0;
while(n>3){
t1=a[n-1]+2*a[0]+a[n-2];
t2=2*a[1]+a[n-1]+a[0];
result+=min(t1,t2);
n-=2;
}
if(n==3){
result+=a[2]+a[0]+a[1];
}
else if(n==2){
result+=a[1];
}
cout<<result<<endl;
}
return 0;
}