[动态规划] 组合背包问题

文章介绍了一个涉及动态规划和组合优化的问题,探讨了如何在有限船载重条件下,计算海盗盗取宝物的最大价值,通过递推关系和状态压缩技术简化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

有个财主收藏了大量的宝物。为防止被盗,他将宝物藏在离家不太远一个海岛上的不同洞穴内,有些洞内放了一件宝物,有些洞存放了多件,并绘制了藏宝图。但藏宝图不慎被一个海盗发现,他详细知道了每件宝物所在的洞穴。好在财主事先做了进一步的防范措施:万一有人进入一个洞内窃取宝物,最多只能取走洞内的一件宝物,而且不能让其再进入同一个洞内。海盗决定驾着他的小船去盗宝,但船承载货物的重量受限。已知每件宝物的重量和价值,请你根据船的载重量,推算海盗在每个洞只能进去一次的情况下,这一趟盗走宝物可能导致财主最大价值的损失是多少?

关于输入

第一行两个整数m,n(1<=m,n<=1000),分别是船的载货重量(海盗自身的重量忽略不计)和宝物总件数。两个整数以空格间隔
接下来n行,每行3个数,分别表示各件宝物的重量、价值和所在洞的编号。均为整数,且以空格间隔。

关于输出

一个整数值,为所盗宝物可能的最大总价值。

例子输入
30 3
15 8 1
10 5 1
48 400 2
例子输出
8
#include <iostream>
using namespace std;

int m,n,l[1005]={0},w[1005],v[1005],pos[1005][1005],x;
int len=0;
int dp[100005];

int main(){
	scanf("%d%d",&m,&n);
	for(int i=1;i<=n;i++){
		scanf("%d%d%d",w+i,v+i,&x);
		l[x]++;
		pos[x][l[x]]=i;
		len=max(x,len);
	}
	for(int i=1;i<=len;i++)
		for(int j=m;j>=1;j--){
			for(int k=1;k<=l[i];k++){
				if(w[pos[i][k]]<=j){
					dp[j]=max(dp[j],dp[j-w[pos[i][k]]]+v[pos[i][k]]);
				}
			}
		}
	printf("%d\n",dp[m]);
	return 0;
}
解题分析

本题是一道经典的组合背包问题,不同于01背包和完全背包问题,我们增加了一重限制,即我们将物品分组了,每组物品中我们最多只能取一个物品,在这种情况下,我们又该如何去解决问题呢?

首先,我们不妨定义dp[i][j]为考虑前i个洞穴,背包容量为j的情况下我们能得到的最大价值。根据容斥原理,我们可以比较轻松地得到递推的关系,dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]),其中w[i]是我们从第i个洞穴取出的物品的重量(weight),v[i]是这个物品的价值(value)。

但是,在真正的应用场景中,这样直接递推是不合适的,我们还需要更多的数组辅助我们,此外,我们需要用三层循环去给dp数组打表,不断更新dp数组。而且,考虑到内存的要求,我们仿照01背包问题的状态压缩和滚动数组的方法去优化我们的内存。

此外,还需要理解for循环顺序不一样对dp数组打表的影响,不妨手动模拟填表一下,我们可以发现,如果我们在外层枚举背包容量,而内层枚举每一个物品,那么我们得到的dp[i][j]就是在背包容量为j的情况下,考虑前i个物品,仅取出一个物品能得到的最大价值。

代码实现

### 关于周志华机器学习》(西瓜书)第二章学习笔记 #### 模型评估选择概述 模型评估选择机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值