[动态规划]怪盗基德的滑翔翼

描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

输入

输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。

输出

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

样例输入

3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10

样例输出

6
6
9
解题分析

本题属于“最长上升子序列”动态规划题的变种,实际上只要方向往右搜索和方向往左搜索,找一个最长上升子序列即可。以向右寻找为例,递推公式为dp[i]=max{dp[i],dp[j]};其中j<i,且高度h[j]<h[i],dp[i]表示到i位置时,最长的上升子序列。最后输出二者最大值中的最大值即可。

代码演示
#include <iostream>
#include <cmath>
#include <iomanip>
#include <string>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <list>
#include <bitset>
#define MAXN 105
using namespace std;

int building[MAXN];
int dp[MAXN];
int dp2[MAXN];

int main(){
	int K;
	scanf("%d",&K);
	while(K--){
		int N;
		scanf("%d",&N);
		for(int i=0 ; i < N ; i++){
			scanf("%d",&building[i]);
			dp2[i]=dp[i]=1;
		}
		for(int i=0;i<N;i++){
			for(int j=i+1;j<N;j++){
				if(building[j]<building[i]){
					dp[j]=max(dp[i]+1,dp[j]);
				}
			}
		}
		for(int i=0;i<N;i++){
			for(int j=i+1;j<N;j++){
				if(building[j]>building[i]){
					dp2[j]=max(dp2[i]+1,dp2[j]);
				}
			}
		}
		printf("%d\n",max(*max_element(dp,dp+N),*max_element(dp2,dp2+N)));
	}
	return 0;
}

### 关于信奥一本通在线评测系统中编号1286题目基德滑翔翼 #### 题目概述 该题属于动态规划中的路径优化类问题。背景设定为基德利用滑翔翼从一个高楼飞到另一个高楼,目标是在能量消耗最小的情况下完成飞行路线。 #### 动态规划模型构建 为了求解此问题,可以建立如下DP方程: 设`dp[i][j]`表示到达第i栋楼高度为j时所需的最少能量消耗,则状态转移方程可定义为: ```cpp for (int i = 1; i <= n; ++i) { for (int j = hmin; j <= hmax; ++j) { dp[i][j] = min(dp[i-1][k] + cost(i, k, j)) // 对所有可能的高度k进行枚举 } } ``` 其中`cost(i,k,j)`代表从上一栋楼高度k移动至当前楼层高度j所耗费的能量值[^1]。 #### 边界条件处理 初始化时需考虑起始位置的能量消耗设置以及不可达情况下的极大值赋初值操作,确保算法能够正常收敛得到最优解。 #### 时间复杂度分析 由于涉及到双重循环遍历每一对`(i,j)`组合,并且内部还需计算不同起点带来的额外开销,因此整体时间复杂度大约为O(n * m^2),这里n指代建筑物数量,m则对应最大允许变化范围内的高度差。 #### 测试案例建议 对于此类涉及具体数值运算的问题,在编写代码前应先准备好几组边界测试用例来验证逻辑正确性,比如当只有一座建筑、两座相邻高度相等/不等的情况等特殊情形下程序的行为是否符合预期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值