题目描述
给出一个小于2^{32}232的正整数。这个数可以用一个3232位的二进制数表示(不足3232位用00补足)。我们称这个二进制数的前1616位为“高位”,后1616位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数13145201314520用二进制表示为0000 0000 0001 0100 0000 1110 1101 100000000000000101000000111011011000(添加了1111个前导00补足为3232位),其中前1616位为高位,即0000 0000 0001 01000000000000010100;后1616位为低位,即0000 1110 1101 10000000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数0000 1110 1101 1000 0000 0000 0001 010000001110110110000000000000010100。它即是十进制的249036820249036820。
输入输出格式
输入格式:
一个小于2^{32}232的正整数
输出格式:
将新的数输出
输入输出样例
输入样例#1: 复制
1314520
输出样例#1: 复制
249036820
符号意义
~取反,0取反是1,1取反是0
<<是左移,比如1<<n,表示1往左移n位,即数值大小2的n次方
>>右移,类似左移,数值大小除以2的n次方
&按位与,1与任意数等于任意数本身,0与任意数等于0,即1&x=x,0&x=0
|按位或,x|y中只要有一个1则结果为1
^按位异或,x^y相等则为0,不等则为1
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
unsigned long long x;
cin>>x;
cout<<((x&0x0000ffff)<<16|(x&0xffff0000)>>16)<<endl;//万无一失的做法
}