选择排序 C++代码实现及性能分析 恋上数据结构笔记

本文详细介绍了选择排序算法的工作原理、时间复杂度,并展示了选择排序的优化——堆排序。通过实例代码解释了选择排序如何在数组中找到最大值并进行交换,同时提供了选择排序和优化后堆排序的运行示例。文章强调了虽然选择排序无法在内部循环中优化,但通过使用堆可以提高效率,将时间复杂度降低到O(nlogn)。
摘要由CSDN通过智能技术生成

复习梗概

  1. 选择排序算法图解
  2. 选择排序在什么地方进行元素的调换
  3. 选择排序在什么地方优化,优化后的算法
  4. 时间复杂度分析

算法思想及时间复杂度

选择排序:从未排序序列中,找出最大的那个元素,与未排序序列的末尾元素交换,
/不断执行上述步骤(n-1轮),末尾最大元素形成有序序列(挑最小的也可以,看需求是升序还是降序)
相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为难以优化
最好最坏平均时间复杂度均为O(n2) 空间复杂度:O(1) 属于稳定排序


选择排序的优化

相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为这里难以优化
但实际上可以从另一个地方优化:即选取未排序序列最大值这个过程,如果用堆完成的话,时间复杂度只有O(logn)(主要是下滤),整体复杂度O(nlogn)
因此,优化后的选择排序算法 即为 堆排序
详情请见下一篇文章:堆排序


代码及输出

void selectionSort(vector<int> &array)
{     //外循环控制未排序序列末尾指针,以及重置最大值索引,以及调换最大值与末尾元素
    for (int end = array.size() - 1; end > 0; end--) // end记录当前未排序序列的末尾
    {
        int maxNumIndex = 0;
        for (int i = 1; i <= end; i++)
        { //注意这里:选择排序:每次内循环取出最大值(初始值为数组第一个元素)与后面每一位元素比较,若找到更大的,则更新最大值所在索引
            if (array[maxNumIndex] <= array[i])
            {
                maxNumIndex = i;
            }
        } //内循环结束,记录当前未排序序列的最大值的索引
             
        int temp = array[maxNumIndex]; //调换未排序序列的最大值元素与末尾元素位置
        array[maxNumIndex] = array[end];
        array[end] = temp;
    }
}
输入数组:
6 9 3 1 2 0 8 29 15 11 10 
选择排序基础版
找到最大值:29 与10交换
6 9 3 1 2 0 8 10 15 11 29
找到最大值:15 与11交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:11 与11交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:10 与10交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:9 与8交换
6 8 3 1 2 0 9 10 11 15 29
找到最大值:8 与0交换
6 0 3 1 2 8 9 10 11 15 29
找到最大值:6 与2交换
2 0 3 1 6 8 9 10 11 15 29
找到最大值:3 与1交换
2 0 1 3 6 8 9 10 11 15 29
找到最大值:2 与1交换
1 0 2 3 6 8 9 10 11 15 29
找到最大值:1 与0交换
0 1 2 3 6 8 9 10 11 15 29
算法用时:(微秒)
[AlgoTime: 16004 us]

完整代码

#include <iostream>
#include <vector>
#include "MeasureAlgoTime.hpp"
using namespace std;

//! 选择排序:从未排序序列中,找出最大的那个元素,与未排序序列的末尾元素交换,
//! 不断执行上述步骤(n-1轮),末尾最大元素形成有序序列(挑最小的也可以,看需求是升序还是降序)
//! 相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为难以优化
//! 堆排序
//! 最好最坏平均时间复杂度:O(n2)   空间复杂度:O(1)  属于稳定排序

void vectorPrint(vector<int> &array)
{
    for (int i = 0; i < array.size(); i++)
    {
        cout << array[i] << ' ';
    }
    cout << endl;
}

void selectionSort(vector<int> &array)
{                                                    //外循环控制未排序序列末尾指针,以及重置最大值索引,以及调换最大值与末尾元素
    for (int end = array.size() - 1; end > 0; end--) // end记录当前未排序序列的末尾
    {
        int maxNumIndex = 0;
        for (int i = 1; i <= end; i++)
        { //注意这里:选择排序:每次内循环取出最大值(初始值为数组第一个元素)与后面每一位元素比较,若找到更大的,则更新最大值所在索引
            if (array[maxNumIndex] <= array[i])
            {
                maxNumIndex = i;
            }
        } //内循环结束,记录当前未排序序列的最大值的索引
        cout << "找到最大值:" << array[maxNumIndex] << " "
             << "与" << array[end] << "交换" << endl;
             
        int temp = array[maxNumIndex]; //调换未排序序列的最大值元素与末尾元素位置
        array[maxNumIndex] = array[end];
        array[end] = temp;
        vectorPrint(array);
    }
}

int main()
{
    Tools::Time::AlgoTimeUs time1;
    Tools::Time::AlgoTimeUs time2;
    Tools::Time::AlgoTimeUs time3;

    vector<int> array;
    array = {6, 9, 3, 1, 2, 0, 8, 29, 15, 11, 10};
    vector<int> array2 = array;
    vector<int> array3 = array;

    time1.start();
    vectorPrint(array);
    cout << "选择排序基础版" << endl;
    selectionSort(array);
    cout << "算法用时:(微秒)";
    time1.printElapsed();
    cout << ' ' << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值