复习梗概
- 选择排序算法图解
- 选择排序在什么地方进行元素的调换
- 选择排序在什么地方优化,优化后的算法
- 时间复杂度分析
算法思想及时间复杂度
选择排序:从未排序序列中,找出最大的那个元素,与未排序序列的末尾元素交换,
/不断执行上述步骤(n-1轮),末尾最大元素形成有序序列(挑最小的也可以,看需求是升序还是降序)
相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为难以优化
最好最坏平均时间复杂度均为O(n2) 空间复杂度:O(1) 属于稳定排序
选择排序的优化
相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为这里难以优化
但实际上可以从另一个地方优化:即选取未排序序列最大值这个过程,如果用堆完成的话,时间复杂度只有O(logn)(主要是下滤),整体复杂度O(nlogn)
因此,优化后的选择排序算法 即为 堆排序
详情请见下一篇文章:堆排序
代码及输出
void selectionSort(vector<int> &array)
{ //外循环控制未排序序列末尾指针,以及重置最大值索引,以及调换最大值与末尾元素
for (int end = array.size() - 1; end > 0; end--) // end记录当前未排序序列的末尾
{
int maxNumIndex = 0;
for (int i = 1; i <= end; i++)
{ //注意这里:选择排序:每次内循环取出最大值(初始值为数组第一个元素)与后面每一位元素比较,若找到更大的,则更新最大值所在索引
if (array[maxNumIndex] <= array[i])
{
maxNumIndex = i;
}
} //内循环结束,记录当前未排序序列的最大值的索引
int temp = array[maxNumIndex]; //调换未排序序列的最大值元素与末尾元素位置
array[maxNumIndex] = array[end];
array[end] = temp;
}
}
输入数组:
6 9 3 1 2 0 8 29 15 11 10
选择排序基础版
找到最大值:29 与10交换
6 9 3 1 2 0 8 10 15 11 29
找到最大值:15 与11交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:11 与11交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:10 与10交换
6 9 3 1 2 0 8 10 11 15 29
找到最大值:9 与8交换
6 8 3 1 2 0 9 10 11 15 29
找到最大值:8 与0交换
6 0 3 1 2 8 9 10 11 15 29
找到最大值:6 与2交换
2 0 3 1 6 8 9 10 11 15 29
找到最大值:3 与1交换
2 0 1 3 6 8 9 10 11 15 29
找到最大值:2 与1交换
1 0 2 3 6 8 9 10 11 15 29
找到最大值:1 与0交换
0 1 2 3 6 8 9 10 11 15 29
算法用时:(微秒)
[AlgoTime: 16004 us]
完整代码
#include <iostream>
#include <vector>
#include "MeasureAlgoTime.hpp"
using namespace std;
//! 选择排序:从未排序序列中,找出最大的那个元素,与未排序序列的末尾元素交换,
//! 不断执行上述步骤(n-1轮),末尾最大元素形成有序序列(挑最小的也可以,看需求是升序还是降序)
//! 相比冒泡排序,选择排序无法在内循环过程中,通过比较确定前面是否已经形成有序序列,因此我认为难以优化
//! 堆排序
//! 最好最坏平均时间复杂度:O(n2) 空间复杂度:O(1) 属于稳定排序
void vectorPrint(vector<int> &array)
{
for (int i = 0; i < array.size(); i++)
{
cout << array[i] << ' ';
}
cout << endl;
}
void selectionSort(vector<int> &array)
{ //外循环控制未排序序列末尾指针,以及重置最大值索引,以及调换最大值与末尾元素
for (int end = array.size() - 1; end > 0; end--) // end记录当前未排序序列的末尾
{
int maxNumIndex = 0;
for (int i = 1; i <= end; i++)
{ //注意这里:选择排序:每次内循环取出最大值(初始值为数组第一个元素)与后面每一位元素比较,若找到更大的,则更新最大值所在索引
if (array[maxNumIndex] <= array[i])
{
maxNumIndex = i;
}
} //内循环结束,记录当前未排序序列的最大值的索引
cout << "找到最大值:" << array[maxNumIndex] << " "
<< "与" << array[end] << "交换" << endl;
int temp = array[maxNumIndex]; //调换未排序序列的最大值元素与末尾元素位置
array[maxNumIndex] = array[end];
array[end] = temp;
vectorPrint(array);
}
}
int main()
{
Tools::Time::AlgoTimeUs time1;
Tools::Time::AlgoTimeUs time2;
Tools::Time::AlgoTimeUs time3;
vector<int> array;
array = {6, 9, 3, 1, 2, 0, 8, 29, 15, 11, 10};
vector<int> array2 = array;
vector<int> array3 = array;
time1.start();
vectorPrint(array);
cout << "选择排序基础版" << endl;
selectionSort(array);
cout << "算法用时:(微秒)";
time1.printElapsed();
cout << ' ' << endl;
return 0;
}