有限元法基本思想和分类

本文介绍了有限元法的基本思想,通过离散化、假定单元场函数和单元分析,将连续问题转化为有限自由度的离散问题。接着,详细阐述了有限元法的分类,包括位移法、力法和混合法,以及线性和非线性问题的有限元分析。线弹性有限元法适用于理想弹性体,而非线性有限元法则涵盖了材料非线性、几何非线性和边界非线性问题,其求解过程更为复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 有限元法基本思想

有限元法是在连续体上直接进行近似计算的一种数值方法,其基本思想通过下面的例子来说明。图1简答说明了早期数学上求解圆面积的近似方法。首先将连续的圆分割成一些三角形,求出每个三角形的面积,再将每个小三角形面积相加,即可得到圆面积的近似值。前面是“分”的过程,后面是“合”的过程。之所以要分,是因为三角形面积容易求得。这样简单的一分一合,就很容易求出圆面积的近似值。体现了有限元法的基本思想,即“拆整为零,集零为整”。

“拆整为零”即“分”的过程,具体包括

1)离散化

将连续的求解区域离散为有限个部分的集合,并认为各部分只通过有线个点连接起来。例如图2,可假想连续体(a)由许多小部件(b)组成,这些规则或不规则的小部分成为单元(element)。单元之间只通过有限个点连接起来,如(c)所示,单元①与单元②只在1、2两点相连,这些连接点称为节点(node)。这一过程称有限元离散化过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值