哈希表
定义:哈希表是根据关键码的值而直接进行访问的数据结构
哈希函数
通过特定编码方式来将其他数据格式转化为不同的数值的函数
同时我们会通过取模来保证得到的数值始终落在哈希表的size范围内,若是有同时映射到哈希表同一个索引下标的值,则会产生哈希碰撞
哈希碰撞:
当多个数值同时映射到一个位置时,就产生了哈希碰撞,此时有两种解决方法
拉链法:
即在碰撞的地方生成一个链表,逐个保存后来的值
线性探测法:
若产生冲突,则冲突位置向下找一个位置保存信息,故使用时一定要保证tableSize大于dataSize
常见的三种哈希结构:
使用哈希法解决问题时,通常选择下列三种数据结构:
- 数组
- set(集合)
- map(映射)
总结:
当需要快速判断一个元素是否出现在集合中时,就应当考虑哈希法。
但哈希法的使用也是存在弊端的:他牺牲了空间来换取时间,使用时同样也需要注意
题目链接:242. 有效的字母异位词 - 力扣(LeetCode)
初见思路:
使用两个数组,分别保存每个字母出现的个数,随即一起遍历,若有不同返回false,否则返回true
但在看完代码随想录中的代码后,发现没必要创建两个数组,只需要在一个数组上进行比对即可,第一个数组存在则++,在第二个数组中存在则–,最终遍历数组进行判断即可,ac代码如下:
class Solution {
public boolean isAnagram(String s, String t) {
int[] jud = new int[26];
for(int i = 0; i < s.length();i++){
jud[s.charAt(i)-'a']++;
}
for(int i = 0; i < t.length();i++){
jud[t.charAt(i)-'a']--;
}
for(int i = 0; i < 26;i++){
if(jud[i] != 0){
return false;
}
}
return true;
}
}
题目链接:349. 两个数组的交集 - 力扣(LeetCode)
初见思路:
本题与上一道题目类似,同样是判断字符是否出现过的问题,但不同的是,本题中的元素会反复出现,但我们需要做的是去除重复的元素后再次返回,因此本题中我使用了两个boolean数组对元素是否出现过进行判断,当其出现过一次后,就不再在result数组中添加他。ac代码如下:
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
int ans[] = new int[1000];
boolean judged[] = new boolean[1000];
for(int i = 0; i <nums1.length;i++){
ans[nums1[i]]++;
}
int num = 0;
for(int i = 0; i <nums2.length;i++){
if(ans[nums2[i]] > 0 && !judged[nums2[i]]){
num++;
judged[nums2[i]] = true;
}
}
boolean judged2[] = new boolean[1000];
int[] result = new int[num];
num = 0;
for(int i = 0; i <nums2.length;i++){
if(ans[nums2[i]] > 0 && !judged2[nums2[i]]){
result[num++] = nums2[i];
judged2[nums2[i]] = true;
}
}
return result;
}
上述思路固然可行,但却会造成极大的空间浪费,使用数组进行书写由于题目中会有一些空缺的未使用的元素,故会产生空间浪费,更好的思路应当是使用hashmap对题目进行处理,具体代码如下:
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
if(nums1 == null || nums2 == null || nums1.length == 0|| nums2.length == 0){
return new int[0];
}
Set<Integer> set1 = new HashSet<>();
Set<Integer> resSet = new HashSet<>();
for(int i:nums1){
set1.add(i);
}
for(int i:nums2){
if(set1.contains(i)){
resSet.add(i);
}
}
return resSet.stream().mapToInt(x->x).toArray();
}
}
总结
做题后发现使用hashset的通过用时相对于代码一来讲大了很多,且空间使用也并没有好到哪里去,这是因为:
直接使用set 不仅占用空间比数组大,而且速度要比数组慢,set把数值映射到key上都要做hash计算的。
不要小瞧 这个耗时,在数据量大的情况,差距是很明显的。
还是应当多看看hashset的相关函数,本题尽管明白了思路,但完全不知道stl中hashSet的写法以及具体函数,还是不能很好的完成问题
初见是没有思路的,只得看了代码随想录中的题解:
→本题看起来像是一道数学问题,实则不然,由于出现一次的结果就一定会在下次循环中出现,因此只需要判断数字是否出现过即可,出现过立即停止循环,否则不停的进行数字的变换判断即可,重点还是hashset的使用,具体ac代码如下:
class Solution {
int getNextNum(int n){
int result = 0;
while (n > 0){
int last = n % 10;
n /= 10;
result += last * last;
}
return result;
}
public boolean isHappy(int n) {
int last;
Set<Integer> record = new HashSet<>();
while(n != 1 && !record.contains(n)){
record.add(n);
n = getNextNum(n);
}
return n == 1;
}
}
思路:
要想到此题应该使用什么数据结构,由于我们要同时使用到给出的数组中的下标值以及其具体的值,故选择Hashmap对题目进行处理,具体操作为生成一个result[2]数组用来保存结果,对于给出数组的每个元素,判断减去其值的值是否在map中,若在则可直接赋值result数组并返回,若不在则将该元素加入到hashMap中去,这样做通过一次循环就能够完成判断。
ac代码如下:
class Solution {
public int[] twoSum(int[] nums, int target) {
int[] res = new int[2];
if (nums == null || nums.length == 0) return res;
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int tmp = target - nums[i];
if (map.containsKey(tmp)) {
res[1] = i;
res[0] = map.get(tmp);
}
map.put(nums[i], i);
}
return res;
}
}