【运输计划】【二分】【树上倍增】


又来重新写了一遍运输计划
不得不说noip2015的分量还是很重的orz
比上次写多了5分,可是最后一个测试点怎么也得要2.4s不开心(打滚qwq)


贴代码吧~

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=3e5+5;
int n,m,plan[N][4],a,b,c,fa[N][20],wor[N][20],dp[N],ma;
int head[N],next[N*2],tov[N*2],tot,zhi[N*2];
int tr[N],al,flag;
bool vis[N],yes;
void build(int x,int y,int z)
{tot++;next[tot]=head[x];tov[tot]=y;head[x]=tot;zhi[tot]=z;}
void dfs(int x) //预遍历 
{
    vis[x]=true;
    int u=head[x],v=tov[u];
    while(u){
        if(!vis[v])
        {
            dp[v]=dp[x]+1;dfs(v);
            wor[v][0]=zhi[u];
            fa[v][0]=x;
        }
        u=next[u],v=tov[u];
    }
}
void LCA(int k,int x,int y)//求lca 
{
    if(dp[x]<dp[y])swap(x,y);
    int dis=dp[x]-dp[y],hh=0;
    for(int i=19;i>=0;i--)
        if(dis&(1<<i)){hh+=wor[x][i];x=fa[x][i];}
    if(x==y)
    {
        plan[k][0]=x;plan[k][3]=hh;
        return;
    }
    for(int i=19;i>=0;i--)
        if(fa[x][i]!=fa[y][i])
        {hh+=wor[x][i]+wor[y][i];x=fa[x][i];y=fa[y][i];}
    plan[k][0]=fa[x][0];
    plan[k][3]=hh+wor[x][0]+wor[y][0];
}
void pre() //预main 
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<n;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        build(a,b,c);build(b,a,c);
    }
    dp[1]=1;dfs(1);
    for(int i=1;i<20;i++)
        for(int j=1;j<=n;j++)
        {fa[j][i]=fa[fa[j][i-1]][i-1];wor[j][i]=wor[fa[j][i-1]][i-1]+wor[j][i-1];}
    for(int i=1;i<=m;i++)  //处理出所有线路的相关量 
    {
        scanf("%d%d",&plan[i][1],&plan[i][2]);
        LCA(i,plan[i][1],plan[i][2]);
        ma=max(ma,plan[i][3]);
    }
}
void dfs2(int x,int fa) //check 
{
    if(yes)return;
    int u=head[x],v=tov[u];
    while(u){
        if(v!=fa)
        {
            dfs2(v,x);
            tr[x]+=tr[v];
        }
        u=next[u],v=tov[u];
    }
    if(tr[x]==al&&wor[x][0]>=flag)yes=true;
}
bool check(int x)
{
    memset(tr,0,sizeof(tr));al=0;yes=false;
    for(int i=1;i<=m;i++)
    if(plan[i][3]>x)
    {al++;tr[plan[i][1]]++;tr[plan[i][2]]++;tr[plan[i][0]]-=2;}
    flag=ma-x;dfs2(1,1);
    return yes;
}
void worrk()
{
    int le=0,ri=ma,mid=ma;
    while(le<ri)
    {
        mid=(le+ri)>>1;
        if(check(mid))ri=mid;
        else le=mid+1;
    }
    if(le==ri)mid=le;
    printf("%d\n",mid);
}
int main()
{
    freopen("1.in","r",stdin);
    freopen("1.out","w",stdout);
    pre();
    worrk();
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于强化学习的五子棋强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。
GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值