【排序算法】快速/归并排序

目录

1. 常用排序算法梳理

2. 快速排序常规写法

3. 快速排序--力扣912

4. 归并排序


1. 常用排序算法梳理

排序算法

时间复杂度

空间复杂度

稳定性

备注

插入排序

O(n^{2})

-

--

冒泡排序

O(n^{2})

-

--

快速排序

最好: O(nlogn)

最差:

O(n^{2})

最好: O(logn)

最差: O(n)

不稳定

快速排序的不稳定性主要体现在以下几个方面:

    1.分区过程

  • 在快速排序的分区过程中,选择一个基准(pivot),然后将数组分成三部分:小于基准的元素、等于基准的元素和大于基准的元素。

  • 在这个过程中,相等的元素可能会被分到不同的部分,从而改变它们的相对顺序。

     2. 交换操作

  • 快速排序通过交换元素来实现分区。在交换过程中,相等的元素可能会被交换到不同的位置,从而改变它们的相对顺序。

     3.递归排序

  • 快速排序是递归地对分区后的子数组进行排序。在递归过程中,相等的元素可能会被多次交换和分区,从而进一步改变它们的相对顺序。

堆排序

O(nlogn)

-

不稳定

建堆 -> 堆顶堆尾元素交换重建

大顶堆: 堆顶元素最大;小顶堆: 堆顶元素最小

归并排序

O(nlogn)

-

稳定

归并排序(Merge Sort)本质上是一种非原地排序算法,需要额外的空间来存储临时数组。

2. 快速排序常规写法

def quicksort(arr, low, high):
    if low < high:
        pivot_index = partition(arr, low, high)
        quicksort(arr, low, pivot_index - 1)
        quicksort(arr, pivot_index + 1, high)

def partition(arr, low, high):
    pivot = arr[high] 							# 选择最后一个元素作为pivot
    i = low - 1 								# i: 小于pivot的元素的位置
    for j in range(low, high):
        if arr[j] < pivot:
            i += 1
            arr[i], arr[j] = arr[j], arr[i] 	# 交换
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return i + 1

# 使用
arr = [10, 7, 8, 9, 1, 5]
n = len(arr)
quicksort(arr, 0, n-1)
print("Sorted array:", arr)

3. 快速排序--力扣912

考虑快排的时间复杂度最差情况,做两点小优化

def sortArray(self, nums: List[int]) -> List[int]:
    def quicksort(nums, l, r):
        if l < r:
            if len(set(nums[l:r+1])) == 1:
                return
            # t = random.randint(l, r)
            t = (l + r)//2
            nums[t], nums[r] = nums[r], nums[t]
            pivot_idx = partition(nums, l, r)
            quicksort(nums, l, pivot_idx-1)
            quicksort(nums, pivot_idx+1, r)

    def partition(nums, l, r):
        i = l - 1                   # 小于 nums[r] 的位置
        for j in range(l, r):
            if nums[j] < nums[r]:
                i += 1
                nums[i], nums[j] = nums[j], nums[i]
        nums[i+1], nums[r] = nums[r], nums[i+1]
        return i + 1

    n = len(nums)
    quicksort(nums, 0, n-1)
    return nums

4. 归并排序

使用归并排序也可以通过力扣912。

def sortArray(self, nums):
    def mergesort(nums):
        if len(nums) <= 1:
            return nums
        else:
            mid = len(nums) // 2
            left = mergesort(nums[:mid])
            right = mergesort(nums[mid:])
            return merge(left, right)

    def merge(left, right):
        res = []
        i = j = 0
        while i < len(left) and j < len(right):
            if left[i] <= right[j]:      # 保持稳定排序
                res.append(left[i])
                i += 1
            else:
                res.append(right[j])
                j += 1
        res += left[i:]
        res += right[j:]
        return res

    return mergesort(nums)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值