排序算法之冒泡排序(图解)

1.冒泡排序

wikipedia:

冒泡排序(英语:Bubble Sort)又称为泡式排序,是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

为什么介绍用“浮”呢?看它的动图应该就可以理解了。

Bubble_sort_animation.gif

总结一下就是:比较相邻的两个元素然后交换这两者,一直到一整个数列都按照顺序排列。

2.冒泡排序的步骤

可以先看动图,如果动图就能够理解的话,就不需要看下面的步骤了。
bubbleSort.gif

如果觉得动图太快,可以按照下面的步骤一步步理解。

第一次迭代

  1. 从第一个下标开始,也就是0,比较第一个和第二个元素。
  2. 如果第一个元素比第二个元素大,那就交换两者。
  3. 然后比较第二个元素和第三个元素,如果两者也不是升序,那交换两者。
  4. 一直比较和交换,直到最后。

Bubble-sort-0.webp

之后的迭代

冒泡排序就是不断重复迭代的过程,随着不断的交换,大的元素会和动图一样交换到后面,小的元素则会换到前面。下图是第二次迭代。

Bubble-sort-2.webp

下图是最后一次迭代,当-2和-9交换后,这一整个数组的排序就完成了。

Bubble-sort-3.webp

3.冒泡排序的实现

伪代码

function bubble_sort (array, length) {
    var i, j;
    for(i from 0 to length-1){
        for(j from 0 to length-1-i){
            if (array[j] > array[j+1])
                swap(array[j], array[j+1])
        }
    }
}

助记码

i∈[0,N-1)               //循环N-1遍
   j∈[0,N-1-i)           //每遍循环要处理的无序部分
     swap(j,j+1)          //两两排序(升序/降序)

Python

# Bubble sort in Python

def bubbleSort(array):
    
  # loop to access each array element
  for i in range(len(array)):

    # loop to compare array elements
    for j in range(0, len(array) - i - 1):

      # compare two adjacent elements
      # change > to < to sort in descending order
      if array[j] > array[j + 1]:

        # swapping elements if elements
        # are not in the intended order
        temp = array[j]
        array[j] = array[j+1]
        array[j+1] = temp


data = [-2, 45, 0, 11, -9]

bubbleSort(data)

print('Sorted Array in Ascending Order:')
print(data)

Java

// Bubble sort in Java

import java.util.Arrays;

class Main {

  // perform the bubble sort
  static void bubbleSort(int array[]) {
    int size = array.length;
    
    // loop to access each array element
    for (int i = 0; i < size - 1; i++)
    
      // loop to compare array elements
      for (int j = 0; j < size - i - 1; j++)

        // compare two adjacent elements
        // change > to < to sort in descending order
        if (array[j] > array[j + 1]) {

          // swapping occurs if elements
          // are not in the intended order
          int temp = array[j];
          array[j] = array[j + 1];
          array[j + 1] = temp;
        }
  }

  public static void main(String args[]) {
      
    int[] data = { -2, 45, 0, 11, -9 };
    
    // call method using class name
    Main.bubbleSort(data);
    
    System.out.println("Sorted Array in Ascending Order:");
    System.out.println(Arrays.toString(data));
  }
}

C

// Bubble sort in C

#include <stdio.h>

// perform the bubble sort
void bubbleSort(int array[], int size) {

  // loop to access each array element
  for (int step = 0; step < size - 1; ++step) {
      
    // loop to compare array elements
    for (int i = 0; i < size - step - 1; ++i) {
      
      // compare two adjacent elements
      // change > to < to sort in descending order
      if (array[i] > array[i + 1]) {
        
        // swapping occurs if elements
        // are not in the intended order
        int temp = array[i];
        array[i] = array[i + 1];
        array[i + 1] = temp;
      }
    }
  }
}

// print array
void printArray(int array[], int size) {
  for (int i = 0; i < size; ++i) {
    printf("%d  ", array[i]);
  }
  printf("\n");
}

int main() {
  int data[] = {-2, 45, 0, 11, -9};
  
  // find the array's length
  int size = sizeof(data) / sizeof(data[0]);

  bubbleSort(data, size);
  
  printf("Sorted Array in Ascending Order:\n");
  printArray(data, size);
}

C++

// Bubble sort in C++

#include <iostream>
using namespace std;

// perform bubble sort
void bubbleSort(int array[], int size) {

  // loop to access each array element
  for (int step = 0; step < size; ++step) {
      
    // loop to compare array elements
    for (int i = 0; i < size - step; ++i) {

      // compare two adjacent elements
      // change > to < to sort in descending order
      if (array[i] > array[i + 1]) {

        // swapping elements if elements
        // are not in the intended order
        int temp = array[i];
        array[i] = array[i + 1];
        array[i + 1] = temp;
      }
    }
  }
}

// print array
void printArray(int array[], int size) {
  for (int i = 0; i < size; ++i) {
    cout << "  " << array[i];
  }
  cout << "\n";
}

int main() {
  int data[] = {-2, 45, 0, 11, -9};
  
  // find array's length
  int size = sizeof(data) / sizeof(data[0]);
  
  bubbleSort(data, size);
  
  cout << "Sorted Array in Ascending Order:\n";  
  printArray(data, size);
}

4.冒泡排序的复杂度

时间复杂度
最优O(n)
最坏O( n 2 n^2 n2)
平均O( n 2 n^2 n2)
空间复杂度O(1)
稳定性Yes

平均复杂度的计算

循环比较的次数
1st(n-1)
2nd(n-2)
3rd(n-3)
last1

所以,比较的次数是

(n-1) + (n-2) + (n-3) +.....+ 1 = n(n-1)/2

基本上等于 n 2 n^2 n2

  • 51
    点赞
  • 179
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值