【JZ8 二叉树的下一个结点】

描述

给定一个二叉树其中的一个结点,请找出中序遍历顺序的下一个结点并且返回。注意,树中的结点不仅包含左右子结点,同时包含指向父结点的next指针。下图为一棵有9个节点的二叉树。树中从父节点指向子节点的指针用实线表示,从子节点指向父节点的用虚线表示

在这里插入图片描述
示例:
输入:{8,6,10,5,7,9,11},8
返回:9
解析:这个组装传入的子树根节点,其实就是整颗树,中序遍历{5,6,7,8,9,10,11},根节点8的下一个节点就是9,应该返回{9,10,11},后台只打印子树的下一个节点,所以只会打印9,如下图,其实都有指向左右孩子的指针,还有指向父节点的指针,下图没有画出来
在这里插入图片描述

数据范围:节点数满足 1 ≤ n ≤ 50 ,节点上的值满足 1 ≤ val ≤ 100

要求:空间复杂度 O(1) ,时间复杂度 O(n)

输入描述:

输入分为2段,第一段是整体的二叉树,第二段是给定二叉树节点的值,后台会将这2个参数组装为一个二叉树局部的子树传入到函数GetNext里面,用户得到的输入只有一个子树根节点

返回值描述:

返回传入的子树根节点的下一个节点,后台会打印输出这个节点

示例1

输入: {8,6,10,5,7,9,11},8

返回值:9

示例2

输入:{8,6,10,5,7,9,11},6

返回值:7

示例3

输入:{1,2,#,#,3,#,4},4

返回值:1

示例4

输入:{5},5

返回值:"null"

说明:不存在,后台打印"null" 

方法一:暴力解法

如果在笔试题中看到这道题,直接模拟题意就好了。题意需要找到某个结点中序遍历的下一个结点,那我们的做法很显然可以这样:

  1. 根据给出的结点求出整棵树的根节点
  2. 根据根节点递归求出树的中序遍历,存入vector
  3. 在vector中查找当前结点,则当前结点的下一结点即为所求。

虽然有点暴力,但是时间复杂度也是线性的,第一步:最坏为O(N), N为整棵树结点的个数。第二步:O(N), 第三步:最坏为O(N),
所以整的时间复杂度:3*O(N)

代码

class Solution {
public:
     void pre_order(TreeLinkNode *root, vector<TreeLinkNode*> &v) {
        if (!root) {
            return;
        }
 
        pre_order(root->left, v);
        v.push_back(root);
        pre_order(root->right, v);
    }
    TreeLinkNode* GetNext(TreeLinkNode* pNode)
    {
          TreeLinkNode *root = nullptr;
          TreeLinkNode *tmp = pNode;
          // 第一步
          while (tmp) {
              root = tmp;
              tmp = tmp->next;
          }  
 
          vector<TreeLinkNode*> v;
          // 第二步
          pre_order(root, v);
 
          // 第三步
          int n = v.size();
          for (int i = 0; i < n; ++i) {
              if (v[i] == pNode && i + 1 != n) {
                  return v[i+1];
              }
          }
          return nullptr;
    }

};

运行时间:7ms
超过1.71% 用C++提交的代码
占用内存:584KB
超过22.33%用C++提交的代码
时间复杂度:O(N)
空间复杂度:O(N)

方法二:最优解法

在面试中,方法一肯定不太好。但是最优解法该怎么去想呢?想不出来就画图分析,举个中序遍历的图:如下:
在这里插入图片描述
红色数字是中序遍历的顺序。接下来,我们就假设,如果当前结点分别是1,2 … 7,看下一结点有什么规律没?

1 => 2 		// 显然下一结点是 1 的父亲结点
2 => 3 		// 下一节点是当前结点右孩子的左孩子结点,其实你也应该想到了,应该是一直到左孩子为空的那个结点
3 => 4 		// 跟 2 的情况相似,当前结点右孩子结点的左孩子为空的那个结点
4 => 5 		// 5 是父亲结点 3 的父亲结点,发现和1有点像,因为 1,3,同样是父亲结点的左孩子
5 => 6 		// 跟 4=>5 一样的道理
6 => 7 		// 跟 3=>4 一样的道理
7 => null 	// 因为属于最尾结点

此时,可以总结一下:

[1] 是一类:特点:当前结点是父亲结点的左孩子
[2 3 6] 是一类,特点:当前结点右孩子结点,那么下一节点就是:右孩子结点的最左孩子结点,如果右孩子结点没有左孩子就是自己
[4 5]是一类,特点:当前结点为父亲结点的右孩子结点,本质还是[1]那一类
[7]是一类,特点:最尾结点

代码

class Solution {
public:
    TreeLinkNode* GetNext(TreeLinkNode* pNode) {
        if (!pNode) {
            return pNode;
        }
 
        // 属于[2 3 6]类
        if (pNode->right) {
            pNode = pNode->right;
            while (pNode->left) {
                pNode = pNode->left;
            }
            return pNode;
        }
 
        // 属于 [1] 和 [4 5]
        while (pNode->next) {
            TreeLinkNode *root = pNode->next;
            if (root->left == pNode) {
                return root;
            }
            pNode = pNode->next;
        }
 
        // 属于[7]
        return nullptr;
        
    }
};

运行时间:4ms
超过11.91% 用C++提交的代码
占用内存:656KB
超过10.25%用C++提交的代码
时间复杂度:最坏情况下为O(N)
空间复杂度:O(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值