【JZ44 数字序列中某一位的数字】

该博客讨论了一个算法问题,涉及寻找一个特殊的数字序列中第n位的数字。序列以0123456789101112...的形式排列。算法通过迭代数字的位数和权重来确定第n位的数字,确保在计算过程中不会发生整型溢出。提供的代码实现了这一逻辑,并在给定的示例中正确找到了对应位置的数字。
摘要由CSDN通过智能技术生成

描述

数字以 0123456789101112131415… 的格式作为一个字符序列,在这个序列中第 2 位(从下标 0 开始计算)是 2 ,第 10 位是 1 ,第 13 位是 1 ,以此类题,请你输出第 n 位对应的数字。

数据范围: 0 ≤ n ≤109

示例1

输入: 0

返回值:0

示例2

输入: 2

返回值:2

示例3

输入: 10

返回值:1

示例4

输入: 13

返回值:1

分析:

按数的位数分类考虑:

  • 1位数, 数的范围是1~9, 共有 9-1+1 = 9 = 9·1 = 9⋅100 个;

  • 2位数, 数的范围是10~99, 共有 99-10+1 = 90 = 9·10 个 = 9⋅101个;

  • 3位数, 数的范围是100~999, 共有 999-100+1 = 900 = 9·100 个 = 9⋅102个;

以此类推

k位数, 共有 9⋅10 k−1 个。

怎么找第n个数字位?

接下来, 我们要找第n个digit(第n个位置, 从1开始算, 不从0开始算), 可以这样做:

每次从k中减去9⋅10 k−1 ⋅k, 能减将则尽量多地减, 然后记录剩下的余数。

n − 9⋅1⋅1(末尾乘上的1表示长度为1的数) − 9⋅10⋅2(长度为2的数)−9⋅102 ⋅3(长度为3的数)−…

下面的代码中我们用while实现, while循环结束时 n 被更新为剩下的余数。

为什么代码中用的是 curNum = (n - 1)/len, 而不是 n/len?

可以举1个简单的例子来验证。
比如, 如果 n = 15, 结果应该是多少? 其实可以用leetcode的test case试一下可以看到expected的答案是2。

在这里插入图片描述
while循环结束时候, n = 15-9 = 6, 而此时 len=2, 即此时统计的数是二位数。
如果使用 curNum = (n - 1)/len , 那么: curNum = (6-1)/2 + 10 = 12, 且接下来可以得到第15个digit就是2, 符合题意。

而如果使用 curNum = n/len , 那么: curNum = 6/2 + 10 = 13, 且接下来可以得到第15个digit就是1, 不合题意。

代码:

class Solution {
public:
    int findNthDigit(int n) {
        int len = 1, weigh = 1;  /* len表示当前数(十进制)的位数, weigh表示当前位的权重(10^i)...  */
        while (n > (long long) 9 * weigh * len) /* 转换成long long, 防止整型溢出 */
        {  
            n -= 9 * weigh * len;
            len++;
            weigh *= 10;
        }
        int curNum = (n - 1)/len + weigh;     // curNum是含有所找digit的那个数, 整个数列的第一个数是1
        int resDigit = 0;
        for (int i = (n-1) % len; i < len; i++)  // 从低位向高位移动扫描, 根据离末位的偏移量找到所找的数字
        {
            resDigit = curNum % 10;
            curNum /= 10;
        }
        return resDigit;
    }
};

运行时间:4ms
超过27.76% 用C++提交的代码
占用内存:544KB
超过1.48%用C++提交的代码
参考于yanglr

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
问题描述: 给定一棵二叉树和一个整数目标值,找出所有从根节点到叶子节点的路径,使得路径上的节点值之和等于目标值。 解题思路: 我们可以使用深度优先搜索(DFS)的思想来解决这个问题。具体步骤如下: 1. 定义一个列表path,用于存储当前的路径。 2. 递归遍历每个节点: a. 将当前节点添加到path。 b. 如果当前节点是叶子节点且路径上的节点值之和等于目标值,则将当前路径添加到结果。 c. 递归遍历当前节点的左子树和右子树。 d. 在递归结束后,将当前节点从path移除,以便开始探索其他路径。 3. 返回结果列表,即所有路径和等于目标值的路径。 代码实现: ``` class Solution: def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]: def dfs(node, path, target): if not node: return path.append(node.val) if not node.left and not node.right and sum(path) == target: res.append(path.copy()) dfs(node.left, path, target) dfs(node.right, path, target) path.pop() res = [] dfs(root, [], targetSum) return res ``` 以上代码,我们定义了一个辅助函数dfs来进行递归遍历。在遍历的过程,我们使用列表path来存储当前路径,如果路径上的节点值之和等于目标值,则将当前路径添加到结果列表res。最后返回结果res。 时间复杂度分析: 假设二叉树的节点数为n,则时间复杂度为O(n),因为我们需要遍历每个节点一次。需要注意的是,在每个节点处,我们都会调用sum函数来计算当前路径的节点值之和,因此总的时间复杂度还需要考虑到sum函数的时间复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值