描述
给定一个长度为 n 的可能有重复值的数组,找出其中不去重的最小的 k 个数。例如数组元素是4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4(任意顺序皆可)。
数据范围: 0 ≤ k,n ≤ 10000,数组中每个数的大小 0 ≤ val ≤ 1000
要求:空间复杂度 O(n) ,时间复杂度 O(nlogn)
示例1
输入:[4,5,1,6,2,7,3,8],4
返回值:[1,2,3,4]
说明:返回最小的4个数即可,返回[1,3,2,4]也可以
示例2
输入:[1],0
返回值:[]
示例3
输入:[0,1,2,1,2],3
返回值:[0,1,1]
方法一:排序
直接排序,然后去前k小数据。
代码:
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
vector<int> ret;
if (k == 0 || k > input.size()) return ret;
sort(input.begin(), input.end());
return vector<int>({input.begin(), input.begin() + k});
}
};
运行时间:6ms
超过2.88% 用C++提交的代码
占用内存:524KB
超过68.01%用C++提交的代码
时间复杂度:O(nlongn)
空间复杂度:O(1)
方法二:堆排序
建立一个容量为k的大根堆的优先队列。遍历一遍元素,如果队列大小<k,就直接入队,否则,让当前元素与队顶元素相比,如果队顶元素大,则出队,将当前元素入队
代码:
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
vector<int> ret;
if (k==0 || k > input.size()) return ret;
priority_queue<int, vector<int>> pq;
for (const int val : input) {
if (pq.size() < k) {
pq.push(val);
}
else {
if (val < pq.top()) {
pq.pop();
pq.push(val);
}
}
}
while (!pq.empty()) {
ret.push_back(pq.top());
pq.pop();
}
return ret;
}
};
运行时间:4ms
超过10.95% 用C++提交的代码
占用内存:532KB
超过66.60%用C++提交的代码
时间复杂度:O(nlongk), 插入容量为k的大根堆时间复杂度为O(longk), 一共遍历n个元素
空间复杂度:O(k)
方法三:快排思想
对数组[l, r]一次快排partition过程可得到,[l, p), p, [p+1, r)三个区间,[l,p)为小于等于p的值
[p+1,r)为大于等于p的值。
然后再判断p,利用二分法
- 如果[l,p), p,也就是p+1个元素(因为下标从0开始),如果p+1 == k, 找到答案
- 如果p+1 < k, 说明答案在[p+1, r)区间内,
- 如果p+1 > k , 说明答案在[l, p)内
代码:
class Solution {
public:
int partition(vector<int> &input, int l, int r) {
int pivot = input[r-1];
int i = l;
for (int j=l; j<r-1; ++j) {
if (input[j] < pivot) {
swap(input[i++], input[j]);
}
}
swap(input[i], input[r-1]);
return i;
}
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
vector<int> ret;
if (k==0 || k > input.size()) return ret;
int l = 0, r = input.size();
while (l < r) {
int p = partition(input, l, r);
if (p+1 == k) {
return vector<int>({input.begin(), input.begin()+k});
}
if (p+1 < k) {
l = p + 1;
}
else {
r = p;
}
}
return ret;
}
};
运行时间:4ms
超过10.95% 用C++提交的代码
占用内存:524KB
超过68.01%用C++提交的代码
时间复杂度:平均时间复杂度为O(n),每次partition的大小为n+n/2+n/4+… = 2n,最坏时间复杂度为O(n^2), 因为每次partition都只减少一个元素
空间复杂度:O(1)