来源:力扣(LeetCode)
描述:
给你一个大小为 m x n
的矩阵 mat
,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。
示例 1:
输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]
示例 2:
输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]
提示:
- m == mat.length
- n == mat[i].length
- 1 <= m, n <= 104
- 1 <= m * n <= 104
- -105 <= mat[i][j] <= 105
方法:直接模拟
思路与算法
根据题目要求,矩阵按照对角线进行遍历。设矩阵的行数为 m , 矩阵的列数为 n, 我们仔细观察对角线遍历的规律可以得到如下信息:
-
一共有
m + n − 1
条对角线,相邻的对角线的遍历方向不同,当前遍历方向为从左下到右上,则紧挨着的下一条对角线遍历方向为从右上到左下; -
设对角线从上到下的编号为
i ∈ [0,m+n−2]
:- 当 i 为偶数时,则第 i 条对角线的走向是从下往上遍历;
- 当 i 为奇数时,则第 i 条对角线的走向是从上往下遍历;
-
当第 ii 条对角线从下往上遍历时,每次行索引减 1,列索引加 1,直到矩阵的边缘为止:
- 当 i < m 时,则此时对角线遍历的起点位置为 (i,0);
- 当 i ≥ m 时,则此时对角线遍历的起点位置为 (m - 1, i - m + 1);
-
当第 i 条对角线从上往下遍历时,每次行索引加 1,列索引减 1,直到矩阵的边缘为止:
- 当 i < n 时,则此时对角线遍历的起点位置为 (0, i);
- 当 i ≥ n 时,则此时对角线遍历的起点位置为 (i - n + 1, n - 1);
根据以上观察得出的结论,我们直接模拟遍历所有的对角线即可。
代码:
class Solution {
public:
vector<int> findDiagonalOrder(vector<vector<int>>& mat) {
int m = mat.size();
int n = mat[0].size();
vector<int> res;
for (int i = 0; i < m + n - 1; i++) {
if (i % 2) {
int x = i < n ? 0 : i - n + 1;
int y = i < n ? i : n - 1;
while (x < m && y >= 0) {
res.emplace_back(mat[x][y]);
x++;
y--;
}
} else {
int x = i < m ? i : m - 1;
int y = i < m ? 0 : i - m + 1;
while (x >= 0 && y < n) {
res.emplace_back(mat[x][y]);
x--;
y++;
}
}
}
return res;
}
};
执行用时:16 ms, 在所有 C++ 提交中击败了98.31%的用户
内存消耗:17.9 MB, 在所有 C++ 提交中击败了62.30%的用户
复杂度分析
时间复杂度: O(m×n),其中 m 为矩阵行的数量,n 为矩阵列的数量。需要遍历一遍矩阵中的所有元素,需要的时间复杂度为 O(m×n)。
空间复杂度: O(1)。除返回值外不需要额外的空间。
author:LeetCode-Solution