【498. 对角线遍历】

来源:力扣(LeetCode)

描述:

给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。

示例 1:
在这里插入图片描述

输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]

示例 2:

输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]

提示:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n <= 104
  • 1 <= m * n <= 104
  • -105 <= mat[i][j] <= 105

方法:直接模拟

思路与算法

根据题目要求,矩阵按照对角线进行遍历。设矩阵的行数为 m , 矩阵的列数为 n, 我们仔细观察对角线遍历的规律可以得到如下信息:

  • 一共有 m + n − 1 条对角线,相邻的对角线的遍历方向不同,当前遍历方向为从左下到右上,则紧挨着的下一条对角线遍历方向为从右上到左下;

  • 设对角线从上到下的编号为 i ∈ [0,m+n−2]

    • 当 i 为偶数时,则第 i 条对角线的走向是从下往上遍历;
    • 当 i 为奇数时,则第 i 条对角线的走向是从上往下遍历;
  • 当第 ii 条对角线从下往上遍历时,每次行索引减 1,列索引加 1,直到矩阵的边缘为止:

    • 当 i < m 时,则此时对角线遍历的起点位置为 (i,0);
    • 当 i ≥ m 时,则此时对角线遍历的起点位置为 (m - 1, i - m + 1);
  • 当第 i 条对角线从上往下遍历时,每次行索引加 1,列索引减 1,直到矩阵的边缘为止:

    • 当 i < n 时,则此时对角线遍历的起点位置为 (0, i);
    • 当 i ≥ n 时,则此时对角线遍历的起点位置为 (i - n + 1, n - 1);

根据以上观察得出的结论,我们直接模拟遍历所有的对角线即可。

代码:

class Solution {
public:
    vector<int> findDiagonalOrder(vector<vector<int>>& mat) {
        int m = mat.size();
        int n = mat[0].size();
        vector<int> res;
        for (int i = 0; i < m + n - 1; i++) {
            if (i % 2) {
                int x = i < n ? 0 : i - n + 1;
                int y = i < n ? i : n - 1;
                while (x < m && y >= 0) {
                    res.emplace_back(mat[x][y]);
                    x++;
                    y--;
                }
            } else {
                int x = i < m ? i : m - 1;
                int y = i < m ? 0 : i - m + 1;
                while (x >= 0 && y < n) {
                    res.emplace_back(mat[x][y]);
                    x--;
                    y++;
                }
            }
        }
        return res;
    }
};

执行用时:16 ms, 在所有 C++ 提交中击败了98.31%的用户
内存消耗:17.9 MB, 在所有 C++ 提交中击败了62.30%的用户
复杂度分析
时间复杂度: O(m×n),其中 m 为矩阵行的数量,n 为矩阵列的数量。需要遍历一遍矩阵中的所有元素,需要的时间复杂度为 O(m×n)。
空间复杂度: O(1)。除返回值外不需要额外的空间。
author:LeetCode-Solution

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值