【1302. 层数最深叶子节点的和】

来源:力扣(LeetCode)

描述:

给你一棵二叉树的根节点 root ,请你返回 层数最深的叶子节点的和

示例 1:
1

输入:root = [1,2,3,4,5,null,6,7,null,null,null,null,8]
输出:15

示例 2:

输入:root = [6,7,8,2,7,1,3,9,null,1,4,null,null,null,5]
输出:19

提示:

  • 树中节点数目在范围 [1, 104] 之间。

  • 1 <= Node.val <= 100

方法一:深度优先搜索

由于层数最深的节点一定是叶节点,因此只要找到所有层数最深的节点并计算节点值之和即可。

可以使用深度优先搜索实现。从根节点开始遍历整个二叉树,遍历每个节点时需要记录该节点的层数,规定根节点在第 0 层。遍历过程中维护最大层数与最深节点之和。

对于每个非空节点,执行如下操作。

  • 1 、判断当前节点的层数与最大层数的关系:

    • 如果当前节点的层数大于最大层数,则之前遍历到的节点都不是层数最深的节点,因此用当前节点的层数更新最大层数,并将最深节点之和更新为当前节点值;
    • 如果当前节点的层数等于最大层数,则将当前节点值加到最深节点之和。
  • 2、对当前节点的左右子节点继续深度优先搜索。

遍历结束之后,即可得到层数最深叶子节点的和。

代码:

class Solution {
private:
    int maxLevel = -1;
    int sum = 0;

public:
    int deepestLeavesSum(TreeNode* root) {
        dfs(root, 0);
        return sum;
    }

    void dfs(TreeNode* node, int level) {
        if (node == nullptr) {
            return;
        }
        if (level > maxLevel) {
            maxLevel = level;
            sum = node->val;
        } else if (level == maxLevel) {
            sum += node->val;
        }
        dfs(node->left, level + 1);
        dfs(node->right, level + 1);
    }
};

执行用时:84 ms, 在所有 C++ 提交中击败了78.19%的用户
内存消耗:58.3 MB, 在所有 C++ 提交中击败了91.63%的用户
复杂度分析
时间复杂度:O(n),其中 n 是二叉树的节点数。深度优先搜索需要遍历每个节点一次。
空间复杂度:O(n),其中 n 是二叉树的节点数。空间复杂度主要取决于递归调用栈的深度,为二叉树的深度,最坏情况下二叉树的深度是 O(n)。

方法二:广度优先搜索

计算最深节点之和也可以使用广度优先搜索实现。使用广度优先搜索时,对二叉树层序遍历,此时不需要维护最大层数,只需要确保每一轮遍历的节点是同一层的全部节点,则最后一轮遍历的节点是全部最深节点。

初始时,将根节点加入队列,此时队列中只有一个节点,是同一层的全部节点。每一轮遍历时,首先得到队列中的节点个数 size,从队列中取出 size 个节点,则这 size 个节点是同一层的全部节点,记为第 x 层。遍历时,第 x 层的每个节点的子节点都在第 x + 1 层,将子节点加入队列,则该轮遍历结束之后,第 x 层的节点全部从队列中取出,第 x + 1 层的节点全部加入队列,队列中的节点是同一层的全部节点。因此该方法可以确保每一轮遍历的节点是同一层的全部节点。

遍历过程中,分别计算每一层的节点之和,则遍历结束时的节点之和即为层数最深叶子节点的和。

代码:

class Solution {
public:
    int deepestLeavesSum(TreeNode* root) {
        int sum = 0;
        queue<TreeNode*> qu;
        qu.emplace(root);
        while (!qu.empty()) {
            sum = 0;
            int size = qu.size();
            for (int i = 0; i < size; i++) {
                TreeNode *node = qu.front();
                qu.pop();
                sum += node->val;
                if (node->left != nullptr) {
                    qu.emplace(node->left);
                }
                if (node->right != nullptr) {
                    qu.emplace(node->right);
                }
            }
        }
        return sum;
    }
};

执行用时:84 ms, 在所有 C++ 提交中击败了78.19%的用户
内存消耗:60.3 MB, 在所有 C++ 提交中击败了37.86%的用户
复杂度分析
时间复杂度: O(n),其中 n 是二叉树的节点数。广度优先搜索需要遍历每个节点一次。
空间复杂度: O(n),其中 n 是二叉树的节点数。空间复杂度主要取决于队列空间,队列中的节点个数不超过 n 个。
author:LeetCode-Solution

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值