来源:力扣(LeetCode)
描述:
给你一棵二叉树的根节点 root
,请你返回 层数最深的叶子节点的和 。
示例 1:
输入:root = [1,2,3,4,5,null,6,7,null,null,null,null,8]
输出:15
示例 2:
输入:root = [6,7,8,2,7,1,3,9,null,1,4,null,null,null,5]
输出:19
提示:
-
树中节点数目在范围 [1, 104] 之间。
-
1 <= Node.val <= 100
方法一:深度优先搜索
由于层数最深的节点一定是叶节点,因此只要找到所有层数最深的节点并计算节点值之和即可。
可以使用深度优先搜索实现。从根节点开始遍历整个二叉树,遍历每个节点时需要记录该节点的层数,规定根节点在第 0 层。遍历过程中维护最大层数与最深节点之和。
对于每个非空节点,执行如下操作。
-
1 、判断当前节点的层数与最大层数的关系:
- 如果当前节点的层数大于最大层数,则之前遍历到的节点都不是层数最深的节点,因此用当前节点的层数更新最大层数,并将最深节点之和更新为当前节点值;
- 如果当前节点的层数等于最大层数,则将当前节点值加到最深节点之和。
-
2、对当前节点的左右子节点继续深度优先搜索。
遍历结束之后,即可得到层数最深叶子节点的和。
代码:
class Solution {
private:
int maxLevel = -1;
int sum = 0;
public:
int deepestLeavesSum(TreeNode* root) {
dfs(root, 0);
return sum;
}
void dfs(TreeNode* node, int level) {
if (node == nullptr) {
return;
}
if (level > maxLevel) {
maxLevel = level;
sum = node->val;
} else if (level == maxLevel) {
sum += node->val;
}
dfs(node->left, level + 1);
dfs(node->right, level + 1);
}
};
执行用时:84 ms, 在所有 C++ 提交中击败了78.19%的用户
内存消耗:58.3 MB, 在所有 C++ 提交中击败了91.63%的用户
复杂度分析
时间复杂度:O(n),其中 n 是二叉树的节点数。深度优先搜索需要遍历每个节点一次。
空间复杂度:O(n),其中 n 是二叉树的节点数。空间复杂度主要取决于递归调用栈的深度,为二叉树的深度,最坏情况下二叉树的深度是 O(n)。
方法二:广度优先搜索
计算最深节点之和也可以使用广度优先搜索实现。使用广度优先搜索时,对二叉树层序遍历,此时不需要维护最大层数,只需要确保每一轮遍历的节点是同一层的全部节点,则最后一轮遍历的节点是全部最深节点。
初始时,将根节点加入队列,此时队列中只有一个节点,是同一层的全部节点。每一轮遍历时,首先得到队列中的节点个数 size,从队列中取出 size 个节点,则这 size 个节点是同一层的全部节点,记为第 x 层。遍历时,第 x 层的每个节点的子节点都在第 x + 1 层,将子节点加入队列,则该轮遍历结束之后,第 x 层的节点全部从队列中取出,第 x + 1 层的节点全部加入队列,队列中的节点是同一层的全部节点。因此该方法可以确保每一轮遍历的节点是同一层的全部节点。
遍历过程中,分别计算每一层的节点之和,则遍历结束时的节点之和即为层数最深叶子节点的和。
代码:
class Solution {
public:
int deepestLeavesSum(TreeNode* root) {
int sum = 0;
queue<TreeNode*> qu;
qu.emplace(root);
while (!qu.empty()) {
sum = 0;
int size = qu.size();
for (int i = 0; i < size; i++) {
TreeNode *node = qu.front();
qu.pop();
sum += node->val;
if (node->left != nullptr) {
qu.emplace(node->left);
}
if (node->right != nullptr) {
qu.emplace(node->right);
}
}
}
return sum;
}
};
执行用时:84 ms, 在所有 C++ 提交中击败了78.19%的用户
内存消耗:60.3 MB, 在所有 C++ 提交中击败了37.86%的用户
复杂度分析
时间复杂度: O(n),其中 n 是二叉树的节点数。广度优先搜索需要遍历每个节点一次。
空间复杂度: O(n),其中 n 是二叉树的节点数。空间复杂度主要取决于队列空间,队列中的节点个数不超过 n 个。
author:LeetCode-Solution