来源:力扣(LeetCode)
描述:
给你两个长度相同的整数数组 target
和 arr
。每一步中,你可以选择 arr
的任意 非空子数组 并将它翻转。你可以执行此过程任意次。
如果你能让 arr
变得与 target
相同,返回 True;否则,返回 False 。
示例 1:
输入:target = [1,2,3,4], arr = [2,4,1,3]
输出:true
解释:你可以按照如下步骤使 arr 变成 target:
1- 翻转子数组 [2,4,1] ,arr 变成 [1,4,2,3]
2- 翻转子数组 [4,2] ,arr 变成 [1,2,4,3]
3- 翻转子数组 [4,3] ,arr 变成 [1,2,3,4]
上述方法并不是唯一的,还存在多种将 arr 变成 target 的方法。
示例 2:
输入:target = [7], arr = [7]
输出:true
解释:arr 不需要做任何翻转已经与 target 相等。
示例 3:
输入:target = [3,7,9], arr = [3,7,11]
输出:false
解释:arr 没有数字 9 ,所以无论如何也无法变成 target 。
提示:
- target.length == arr.length
- 1 <= target.length <= 1000
- 1 <= target[i] <= 1000
- 1 <= arr[i] <= 1000
代码:
方法一:哈希表判断数组元素是否相同
思路
如果 arr 长度是 1,那么只需判断 arr 和 target 是否相同即可。因为此时翻转非空子数组的过程并不会改变数组,只需判断原数组是否相同即可。
如果 arr 长度大于 1,那么首先证明通过一次或二次翻转过程,可以实现数组 arr 中任意两个元素交换位置并且保持其他元素不动。如果想要交换两个相邻元素的位置,那么翻转这两个元素组成的子数组即可。如果想要交换两个非相邻元素的位置,那么首先翻转这两个元素及其中间所有元素组成的子数组,再翻转这两个元素中间的元素组成的子数组即可。这样下来,通过一次或二次翻转过程,即可交换数组中任意两个元素的位置。一旦一个数组中任意两个元素可以交换位置,那么这个数组就能实现任意重排。只需要 arr 和 target 元素相同,arr 就能通过若干次操作变成 target。
代码:
class Solution {
public:
bool canBeEqual(vector<int>& target, vector<int>& arr) {
unordered_map<int, int> counts1, counts2;
for (int num : target) {
counts1[num]++;
}
for (int num : arr) {
counts2[num]++;
}
if (counts1.size() != counts2.size()) {
return false;
}
for (auto &[key, value] : counts1) {
if (!counts2.count(key) || counts2[key] != value) {
return false;
}
}
return true;
}
};
执行用时:16 ms, 在所有 C++ 提交中击败了20.96%的用户
内存消耗:16.4 MB,在所有 C++ 提交中击败了5.09%的用户
复杂度分析
时间复杂度:O(n),其中 n 是输入数组的长度,统计并判断频次是否相同消耗 O(n)。
空间复杂度:O(n),哈希表最多消耗 O(n) 空间。
方法二:排序判断数组元素是否相同
思路
与方法一类似,但是判断元素是否相同时,可以将两个数组分别排序,再判断排完序的数组是否相同即可。
代码:
class Solution {
public:
bool canBeEqual(vector<int>& target, vector<int>& arr) {
sort(target.begin(), target.end());
sort(arr.begin(), arr.end());
return target == arr;
}
};
执行用时:12 ms, 在所有 C++ 提交中击败了56.89%的用户
内存消耗:13.8 MB, 在所有 C++ 提交中击败了74.55%的用户
复杂度分析
时间复杂度: O(n × logn),其中 nn 是输入数组的长度。排序消耗 O(n × logn) 复杂度,判断是否相同消耗 O(n) 复杂度。
空间复杂度: O(logn),快速排序递归深度平均为 O(logn)。
author:LeetCode-Solution