【1582. 二进制矩阵中的特殊位置】

这篇博客介绍了如何高效地找出一个由0和1组成的矩阵中特殊位置的数量。特殊位置是指1出现在矩阵的某一行和某一列中仅有的1。提供了两种C++实现方法,一种是简单的模拟,另一种是通过标记列的值来优化空间复杂度,达到了时间复杂度O(m×n)和空间复杂度O(1)。这两种方法都在力扣平台上的性能表现优秀。
摘要由CSDN通过智能技术生成

来源:力扣(LeetCode)

描述:

给你一个大小为 rows x cols 的矩阵 mat,其中 mat[i][j]01,请返回 矩阵 mat 中特殊位置的数目

特殊位置 定义:如果 mat[i][j] == 1 并且第 i 行和第 j 列中的所有其他元素均为 0(行和列的下标均 从 0 开始 ),则位置 (i, j) 被称为特殊位置。

示例 1:

输入:mat = [[1,0,0],
            [0,0,1],
            [1,0,0]]
输出:1
解释:(1,2) 是一个特殊位置,因为 mat[1][2] == 1 且所处的行和列上所有其他元素都是 0

示例 2:

输入:mat = [[1,0,0],
            [0,1,0],
            [0,0,1]]
输出:3
解释:(0,0), (1,1)(2,2) 都是特殊位置

示例 3:

输入:mat = [[0,0,0,1],
            [1,0,0,0],
            [0,1,1,0],
            [0,0,0,0]]
输出:2

示例 4:

输入:mat = [[0,0,0,0,0],
            [1,0,0,0,0],
            [0,1,0,0,0],
            [0,0,1,0,0],
            [0,0,0,1,1]]
输出:3

提示:

  • rows == mat.length
  • cols == mat[i].length
  • 1 <= rows, cols <= 100
  • mat[i][j] 是 0 或 1

方法一:模拟

思路与算法

题目给定了一个大小为 m × n 的矩阵 mat,并满足矩阵中的任意元素为 1 或者 0。现在给出特殊位置的定义:如果 mat[i][j] = 1, i ∈ [0,m), j ∈ [0,n),并且第 i 行和第 j 列的其他元素均为 0,则位置 (i, j) 为特殊位置。那么我们枚举每一个位置,然后按照特殊位置的定义来判断该位置是否满足要求,又因为矩阵中的每一个元素只能为 1 或者 0,所以我们可以预处理出每一行和列的和来快速的得到每一行和列中的 1 的个数。

代码:

class Solution {
public:
    int numSpecial(vector<vector<int>>& mat) {
        int m = mat.size(), n = mat[0].size();
        vector<int> rowsSum(m);
        vector<int> colsSum(n);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                rowsSum[i] += mat[i][j];
                colsSum[j] += mat[i][j];
            }
        }
        int res = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (mat[i][j] == 1 && rowsSum[i] == 1 && colsSum[j] == 1) {
                    res++;
                }
            }
        }
        return res;
    }
};

执行用时:16 ms, 在所有 C++ 提交中击败了82.73%的用户
内存消耗:12.5 MB,在所有 C++ 提交中击败了57.83%的用户
复杂度分析
时间复杂度: O(m×n),其中 m 为矩阵 mat 的行数,n 为矩阵 mat 的列数。
空间复杂度:O(m + n) ,主要为预处理每一行和列的空间开销。

方法二:列的标记值

在方法一的基础上,我们可以看到对于 (i, j),它为特殊位置的条件为 mat[i][j] = 1 且该行和该列中 1 的数量都为 1。据此,定义第 j 列的标记值为:该列所有 1 所在行中的 1 的数量之和。下面证明,(i, j) 为特殊位置的充要条件是,第 j 列的标记值恰好为 1:

  • 如果 (i, j) 为特殊位置,则说明第 j 列只有一个 1,这一个 1 所在的第 i 行也只有它这一个 1,那么按照标记值的定义可得,第 j 列的标记值为 1。
  • 如果第 j 列的标记值为 1,那么说明该列只能有一个 1。反证:如果有 x 个 1(x > 1),则第 j 列的标记值一定 ≥ x。既然只能有一个 1,设其在第 i 行,那么标记值也是第 i 行中的 1 的数量,即:第 i 行也有且仅有这个 1。所以 (i, j) 为特殊位置。

那么整个矩阵的特殊位置的数量就是最后标记值为 1 的列的数量。

进一步地,我们可以用原始矩阵的第一行来作为我们标记列的额外空间,从而使空间复杂度降至 O(1)。

代码:

class Solution {
public:
    int numSpecial(vector<vector<int>>& mat) {
        int m = mat.size(), n = mat[0].size();
        for (int i = 0; i < m; i++) {
            int cnt1 = 0;
            for (int j = 0; j < n; j++) {
                if (mat[i][j] == 1) {
                    cnt1++;
                }
            }
            if (i == 0) {
                cnt1--;
            }
            if (cnt1 > 0) {
                for (int j = 0; j < n; j++) {
                    if (mat[i][j] == 1) {
                        mat[0][j] += cnt1;
                    }
                }
            }
        }
        int sum = 0;
        for (int i = 0; i < n; i++) {
            if (mat[0][i] == 1) {
                sum++;
            }
        }
        return sum;
    }
};

执行用时:12 ms, 在所有 C++ 提交中击败了97.19%的用户
内存消耗:12.5 MB, 在所有 C++ 提交中击败了69.48%的用户
复杂度分析
时间复杂度: O(m×n),其中 m 为矩阵 mat 的行数,n 为矩阵 mat 的列数。
空间复杂度: O(1),由于用了原始矩阵的空间来作为我们的辅助空间,所以我们仅使用常量空间。
author:LeetCode-Solution

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
MATLAB二进制矩阵(即只有0和1的矩阵)的求逆可能不像普通实数矩阵那样直接使用inv()函数,因为二进制矩阵并不总是方阵,且它们不满足实数域的除法运算规则。对于这种特殊矩阵,通常有几种处理方式: 1. **如果矩阵是方阵并且满秩(即行秩等于列秩且非奇异)**: 可以先将二进制矩阵转换为等价的实数矩阵,例如,通过将每个1替换为正数(如1.0),将0替换为足够小的正数(通常用eps,MATLAB的机器精度)。然后使用inv函数求逆。 ```matlab binaryMatrix = [binary_elements]; epsilon = eps; realMatrix = binaryMatrix + epsilon * (1 - binaryMatrix); invRealMatrix = inv(realMatrix); ``` 2. **如果矩阵不是方阵或不可逆**: 如果矩阵是行向量(行数大于列数)或列向量(列数大于行数),则无法求逆。如果是方阵但不满秩,那么它的逆矩阵不存在。 ```matlab if size(binaryMatrix, 1) ~= size(binaryMatrix, 2) error('Non-square matrix cannot be inverted.'); end ``` 3. **二进制矩阵特有的操作**: 对于某些特定的二进制矩阵,可能存在算法可以直接处理,例如,如果它是布尔矩阵(二值逻辑矩阵),可能需要应用布尔代数的原理。然而,这些方法通常涉及到复杂的逻辑运算而非简单的矩阵运算。 如果你遇到的是一个实际应用的问题,并且矩阵确实满足条件能被转化为实数矩阵求逆,上述方法是可取的。对于特殊情况,建议查阅MATLAB文档或搜索相关的数学资料以获取更精确的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值