【775. 全局倒置与局部倒置】

来源:力扣(LeetCode)

描述:

给你一个长度为 n 的整数数组 nums ,表示由范围 [0, n - 1] 内所有整数组成的一个排列。

全局倒置 的数目等于满足下述条件不同下标对 (i, j) 的数目:

  • 0 <= i < j < n
  • nums[i] > nums[j]

局部倒置 的数目等于满足下述条件的下标 i 的数目:

  • 0 <= i < n - 1
  • nums[i] > nums[i + 1]

当数组 nums全局倒置 的数量等于 局部倒置 的数量时,返回 true ;否则,返回 false

示例 1:

输入:nums = [1,0,2]
输出:true
解释:有 1 个全局倒置,和 1 个局部倒置。

示例 2:

输入:nums = [1,2,0]
输出:false
解释:有 2 个全局倒置,和 1 个局部倒置。

提示:

  • n == nums.length
  • 1 <= n <= 105
  • 0 <= nums[i] < n
  • nums 中的所有整数 互不相同
  • nums 是范围 [0, n - 1] 内所有数字组成的一个排列

方法一:维护后缀最小值

思路与算法

  一个局部倒置一定是一个全局倒置,因此要判断数组中局部倒置的数量是否与全局倒置的数量相等,只需要检查有没有非局部倒置就可以了。这里的非局部倒置指的是 nums[i] > nums[j],其中 i < j − 1。

  朴素的判断方法需要两层循环,设 n 是 nums 的长度,那么该方法的时间复杂度为 O(n2),无法通过。

  进一步的,对于每一个 nums[i] 判断是否存在一个 j (j > i + 1) 使得 nums[i] > nums[j] 即可。这和检查 nums[i] > min⁡(nums[i+2], …, nums[n−1]) 是否成立是一致的。因此我们维护一个变量 minSuffix = min⁡(nums[i+2], …, nums[n−1]),倒序遍历 [0, n − 3] 中的每个 i, 如有一个 i 使得 nums[i] > minSuffix 成立,返回 false\text{false}false,若结束遍历都没有返回 false,则返回 true。

代码:

class Solution {
public:
    bool isIdealPermutation(vector<int>& nums) {
        int n = nums.size(), minSuff = nums[n - 1];
        for (int i = n - 3; i >= 0; i--) {
            if (nums[i] > minSuff) {
                return false;
            }
            minSuff = min(minSuff, nums[i + 1]);
        }
        return true;
    }
};

1

复杂度分析
时间复杂度: O(n),其中 n 是 nums 的长度。
空间复杂度: O(1),只使用到常数个变量空间。

方法二:归纳证明

思路与算法

  nums 是一个由 0 ∼ n − 1 组成的排列,设不存在非局部倒置的排列为「理想排列」。由于非局部倒置表示存在一个 j > i + 1 使得 nums[i] > nums[j] 成立,所以对于最小的元素 0 来说,它的下标不能够大于等于 2。所以有:

  1. 若 nums[0] = 0,那么问题转换为 [1, n − 1] 区间的一个子问题。

  2. 若 nums[1] = 0,那么 nums[0] 只能为 1,因为如果是大于 1 的任何元素,都将会与后面的 1 构成非局部倒置。此时,问题转换为了 [2, n − 1] 区间的一个子问题。

  根据上述讨论,不难归纳出「理想排列」的充分必要条件为对于每个元素 nums[i] 都满足 ∣nums[i] − i∣ ≤ 1。

代码:

class Solution {
public:
    bool isIdealPermutation(vector<int>& nums) {
        for (int i = 0; i < nums.size(); i++) {
            if (abs(nums[i] - i) > 1) {
                return false;
            }
        }
        return true;
    }
};

2

复杂度分析
时间复杂度: O(n),其中 n 是 nums 的长度。
空间复杂度: O(1),只使用到常数个变量空间。
author:力扣官方题解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值