6. 量化工具链开发指南
6.1. 简介
地平线X3芯片量化工具链是基于地平线旭日3代芯片研发的芯片算法解决方案,可以帮助您把浮点模型量化为定点模型, 并在地平线AI芯片上快速部署自研算法模型。
目前在GPU上训练的模型大部分都是浮点模型,即参数使用的是float类型存储;地平线BPU架构的AI芯片使用的是 INT8 的计算精度(业内AI芯片的通用精度),只能运行定点量化模型。从训练出的浮点模型转为定点模型的过程,我们叫做量化,依据是否要对量化后的参数进行调整,我们可以将量化方法分为QAT(Quantification Aware Training)量化感知训练和PTQ(Post-Training Quantization)训练后量化。
地平线X3芯片量化工具链主要使用的是训练后量化PTQ方法,只需使用一批校准数据对训练好的浮点模型进行校准, 将训练过的FP32网络直接转换为定点计算的网络,此过程中无需对原始浮点模型进行任何训练,只对几个超参数调整就可完成量化过程, 整个过程简单快速, 目前在端侧和云侧场景已得到广泛应用。 有关训练后量化PTQ方案的详细信息请阅读