【2681. 英雄的力量】

来源:力扣(LeetCode)

描述:

给你一个下标从 0 开始的整数数组 nums ,它表示英雄的能力值。如果我们选出一部分英雄,这组英雄的 力量 定义为:

i0 ,i1 ,… ik 表示这组英雄在数组中的下标。那么这组英雄的力量为 max(nums[i0],nums[i1] … nums[ik])2 * min(nums[i0],nums[i1] … nums[ik]) 。
请你返回所有可能的 非空 英雄组的 力量 之和。由于答案可能非常大,请你将结果对 109 + 7 取余。

示例 1:

输入:nums = [2,1,4]
输出:141
解释:
第 1 组:[2] 的力量为 22 * 2 = 8 。
第 2 组:[1] 的力量为 12 * 1 = 1 。
第 3 组:[4] 的力量为 42 * 4 = 64 。
第 4 组:[2,1] 的力量为 22 * 1 = 4 。
第 5 组:[2,4] 的力量为 42 * 2 = 32 。
第 6 组:[1,4] 的力量为 42 * 1 = 16 。
第​ ​​​​​​7 组:[2,1,4] 的力量为 42​​​​​​​ * 1 = 16 。
所有英雄组的力量之和为 8 + 1 + 64 + 4 + 32 + 16 + 16 = 141

示例 2:

输入:nums = [1,1,1]
输出:7
解释:总共有 7 个英雄组,每一组的力量都是 1 。所以所有英雄组的力量之和为 7

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109

方法:动态规划 + 前缀和

思路与算法

题目给出一个长度为 n 的数组 nums,我们需要求出所有可能的非空子序列的「英雄组的力量」之和。因为我们的目标是全部子序列的「英雄组的力量」之和,并且「英雄组的力量」与给定的自序列中的最小值和最大值有关,所以我们不妨将给定的数组 nums 进行排序。

现在我们考虑如何计算以某一个 nums[i],0 < i < n(排序后,下同)结尾的全部子序列的「英雄组的力量」之和。由于以 nums[i] 结尾的子序列的最大值一定是 nums[i],所以我们只用考虑全部子序列中的最小值之和。我们用 dp[j] 表示以 nums[j] 结尾的子序列的最小值之和,由于以 nums[i] 结尾的子序列可以由以 nums[0], …, nums[i−1] 结尾的子序列最后加上

nums[i],以及单独一个 nums[i] 得到,有

                          dp[i] = nums[i] + ∑ j = 0 i − 1 \sum_{j=0}^{i-1} j=0i1 dp[j]                (1)

那么以 nums[i] 结尾的全部子序列的「英雄组的力量」之和为

nums[i] × nums[i] × dp[i]                (2)

最后 ( ∑ i = 0 n − 1 \sum_{i=0}^{n−1} i=0n1nums[i] × nums[i] × dp[i])mod(109+7) 即为答案。

以上在 (1) 中计算 dp[i] 需要 O(n) 的时间复杂度,总的复杂度会达到 O(n2),将会超时,我们可以考虑用「前缀和」进行优化:我们用 pre_sum[i+1] 来表示 ∑ j = 0 i \sum_{j=0}^i j=0idp[j],特殊地记 pre_sum[0] = 0,有

pre_sum[i+1] = pre_sum[i] + dp[i]                (3)

进一步 (1) 可以优化为

dp[i] = nums[i] + pre_sum[i]                (4)

由 (3) 和 (4) 我们就可以在 O(1) 的时间完成对 pre_sum[i+1] 和 dp[i] 的计算。又因为 dp[i] 和 pre_sum[i] 的计算只与前一个状态有关,所以在代码实现的过程中,我们可以用「滚动数组」的方式来进行空间优化。

代码:

  • 未空间优化版
class Solution {
public:
    int sumOfPower(vector<int>& nums) {
        int n = nums.size();
        sort(nums.begin(), nums.end());
        vector<int> dp(n);
        vector<int> preSum(n + 1);
        int res = 0, mod = 1e9 + 7;
        for (int i = 0; i < n; i++) {
            dp[i] = (nums[i] + preSum[i]) % mod;
            preSum[i + 1] = (preSum[i] + dp[i]) % mod;
            res = (int) ((res + (long long) nums[i] * nums[i] % mod * dp[i]) % mod);
            if (res < 0) {
                res += mod;
            }
        }
        return res;
    }
};

执行用时:132 ms, 在所有 C++ 提交中击败了13.44%的用户
内存消耗:94.3 MB, 在所有 C++ 提交中击败了9.88%的用户

  • 「滚动数组」空间优化版
class Solution {
public:
    int sumOfPower(vector<int>& nums) {
        int n = nums.size();
        sort(nums.begin(), nums.end());
        int dp = 0, preSum = 0; 
        int res = 0, mod = 1e9 + 7;
        for (int i = 0; i < n; i++) {
            dp = (nums[i] + preSum) % mod;
            preSum = (preSum + dp) % mod;
            res = (int) ((res + (long long) nums[i] * nums[i] % mod * dp) % mod);
            if (res < 0) {
                res += mod;
            }
        }
        return res;
    }
};

执行用时:104 ms, 在所有 C++ 提交中击败了35.03%的用户
内存消耗:90.7 MB, 在所有 C++ 提交中击败了58.92%的用户
复杂度分析

  • 时间复杂度:O(nlogn),其中 n 为数组 nums 的长度。排序需要 O(nlogn) 的时间,动态规划需要 O(n) 的时间。
  • 空间复杂度:O(logn),其中 n 为数组 nums 的长度。排序需要 O(logn) 的递归调用栈空间,动态规划通过「滚动数组」优化后仅使用常量空间。
    author:LeetCode-Solution
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值