Lyapunov-Krasovskii泛函二重积分项求导_原理

Lyapunov-Krasovskii泛函二重积分项求导_原理

2022年下半年,看了很多关于时滞系统和引入时滞的网络化控制系统的论文,对稳定性证明中Lyapunov-Krasovskii泛函中二重积分项求导结果有些疑问,故在知乎上提问寻求帮助,幸运的被一个大佬回答了,这里转载一下。并给出大佬的知乎主页。顾玖大佬知乎主页

时滞系统中Lyapunov泛函中二重积分项求导时,用的是取消内层积分的积分号,然后再算外层积分嘛,这和考研时学习的二重积分求导方式为什么结果不一样,求问?
如果用把内层积分看成一个整体的形式,再求变现积分,结果只有论文里的第二项,有明显的不同,请各位大佬赐教,十分感谢!!!
图片


回答

回答:
我们可以将 ∫ t − τ m t ∫ s t x ˙ T ( v ) R x ˙ ( v ) d v d s \int^{t}_{t-\tau_m}\int^{t}_{s}\dot{x}^T(v)R\dot{x}(v)dvds tτmtstx˙T(v)Rx˙(v)dvds这一项单独拎出来并考虑其对 t t t的导数(这是唯一有难度的一项)。事实上,我们可以得到一个更一般的结论:即,在满足一定条件下,我们可以得到函数 F ( t ) = ∫ α ( t ) β ( t ) [ ∫ φ ( x , t ) ψ ( x , t ) f ( x , y ) d y ] d x (1) F(t)=\int^{\beta(t)}_{\alpha(t)}\Bigg[\int^{\psi(x,t)}_{\varphi(x,t)}f(x,y)dy\Bigg]dx\tag{1} F(t)=α(t)β(t)[φ(x,t)ψ(x,t)f(x,y)dy]dx(1)关于变量 t t t的导数。
如果求得了 F ( t ) F(t) F(t) t t t的导数,只需要令 α ( t ) = t − τ m \alpha(t)=t-\tau_m α(t)=tτm β ( t ) = t \beta(t)=t β(t)=t φ ( x , t ) = x \varphi(x,t)=x φ(x,t)=x ψ ( x , t ) = t \psi(x,t)=t ψ(x,t)=t即可得到我们想要的答案。
注:为了阅读方便,建议先跳到最后看结论,然后再回来看引理 1 和定理 1 的证明。
在给出 F ( t ) F(t) F(t) t t t的导数之前,我们先证明一个引理。

[引理1]

[引理1] 设函数 α ( t ) \alpha(t) α(t) β ( t ) \beta(t) β(t)在区间 [ t 0 , t 1 ] [t_0,t_1] [t0,t1]上可导,函数 f ( x , t ) f(x,t) f(x,t)在区域 D D D上连续,其中区域 D D D { ( x , t ) ∣ x ∈ [ α ( t ) , β ( t ) ] , t ∈ [ t 0 , t 1 ] } \{(x,t)|x\in [\alpha(t),\beta(t)],t \in [t_0,t_1]\} {(x,t)x[α(t),β(t)],t[t0,t1]},且 f ( x , t ) f(x,t) f(x,t)关于 t t t的偏导数在 D D D上连续,则有 d d t ∫ α ( t ) β ( t ) f ( x , t ) d x = f ( β ( t ) , t ) β ′ ( t ) − f ( α ( t ) , t ) α ′ ( t ) + ∫ α ( t ) β ( t ) ∂ ∂ t f ( x , t ) d x (2) \frac{d}{dt}\int^{\beta(t)}_{\alpha(t)}f(x,t)dx=f(\beta(t),t)\beta^{\prime}(t)-f(\alpha(t),t)\alpha^{\prime}(t)+\int^{\beta(t)}_{\alpha(t)}\frac{\partial}{\partial t}f(x,t)dx \tag{2} dtdα(t)β(t)f(x,t)dx=f(β(t),t)β(t)f(α(t),t)α(t)+α(t)β(t)tf(x,t)dx(2)证明: F ( t ) = ∫ α ( t ) β ( t ) f ( x , t ) d x F(t)=\int^{\beta(t)}_{\alpha(t)}f(x,t)dx F(t)=α(t)β(t)f(x,t)dx,则有 F ( t + Δ t ) − F ( t ) = ∫ α ( t + Δ t ) β ( t + Δ t ) f ( x , t + Δ t ) d x − ∫ α ( t ) β ( t ) f ( x , t ) d x = ∫ β ( t ) β ( t + Δ t ) f ( x , t + Δ t ) d x − ∫ α ( t ) α ( t + Δ t ) f ( x , t + Δ t ) d x + ∫ α ( t ) β ( t ) [ f ( x , t + Δ t ) − f ( x , t ) ] d x (3) \begin{aligned}F(t + \Delta t)-F(t)&=\int^{\beta(t+\Delta t)}_{\alpha(t+\Delta t)}f(x,t+\Delta t)dx-\int^{\beta(t)}_{\alpha(t)}f(x,t)dx \\ &=\int^{\beta(t+\Delta t)}_{\beta(t)}f(x,t+\Delta t)dx-\int^{\alpha(t+\Delta t)}_{\alpha(t)}f(x,t+\Delta t)dx \\&+\int^{\beta(t)}_{\alpha(t)}[f(x,t + \Delta t)-f(x,t)]dx\end{aligned}\tag{3} F(t+Δt)F(t)=α(t+Δt)β(t+Δt)f(x,t+Δt)dxα(t)β(t)f(x,t)dx=β(t)β(t+Δt)f(x,t+Δt)dxα(t)α(t+Δt)f(x,t+Δt)dx+α(t)β(t)[f(x,t+Δt)f(x,t)]dx(3)根据导数定义 F ′ ( t ) = lim ⁡ Δ t → 0 F ( t + Δ t ) − F ( t ) Δ t = lim ⁡ Δ t → 0 1 Δ t ∫ β ( t ) β ( t + Δ t ) f ( x , t + Δ t ) d x − lim ⁡ Δ t → 0 1 Δ t ∫ α ( t ) α ( t + Δ t ) f ( x , t + Δ t ) d x + lim ⁡ Δ t → 0 1 Δ t ∫ α ( t ) β ( t ) [ f ( x , t + Δ t ) − f ( x , t ) ] d x (4) \begin{aligned}F^{\prime}(t)&=\lim_{\Delta t \to 0}\frac{F(t + \Delta t)-F(t)}{\Delta t} \\ &=\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\beta(t+\Delta t)}_{\beta(t)}f(x,t+\Delta t)dx-\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\alpha(t+\Delta t)}_{\alpha(t)}f(x,t+\Delta t)dx \\ &+\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\beta(t)}_{\alpha(t)}[f(x,t + \Delta t)-f(x,t)]dx\end{aligned}\tag{4} F(t)=Δt0limΔtF(t+Δt)F(t)=Δt0limΔt1β(t)β(t+Δt)f(x,t+Δt)dxΔt0limΔt1α(t)α(t+Δt)f(x,t+Δt)dx+Δt0limΔt1α(t)β(t)[f(x,t+Δt)f(x,t)]dx(4)由积分中值定理,可知 ∃ ξ 1 ∈ [ β ( t ) , β ( t + Δ t ) ] \exists \xi_1 \in [\beta(t),\beta(t + \Delta t)] ξ1[β(t),β(t+Δt)]以及 ∃ ξ 2 ∈ [ α ( t ) , α ( t + Δ t ) ] \exists \xi_2 \in [\alpha(t),\alpha(t + \Delta t)] ξ2[α(t),α(t+Δt)]使得 lim ⁡ Δ t → 0 1 Δ t ∫ β ( t ) β ( t + Δ t ) f ( x , t + Δ t ) d x = lim ⁡ Δ t → 0 1 Δ t f ( ξ 1 , t + Δ t ) ( β ( t + Δ t ) − β ( t ) ) = f ( β ( t ) , t ) β ′ ( t ) (5) \begin{aligned}&\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\beta(t+\Delta t)}_{\beta(t)}f(x,t+\Delta t)dx \\ =& \lim_{\Delta t \to 0}\frac{1}{\Delta t}f(\xi_1,t+ \Delta t)(\beta(t + \Delta t)-\beta(t)) \\ =& f(\beta(t),t)\beta^{\prime}(t)\end{aligned}\tag{5} ==Δt0limΔt1β(t)β(t+Δt)f(x,t+Δt)dxΔt0limΔt1f(ξ1,t+Δt)(β(t+Δt)β(t))f(β(t),t)β(t)(5)同理可得 lim ⁡ Δ t → 0 1 Δ t ∫ α ( t ) α ( t + Δ t ) f ( x , t + Δ t ) d x = lim ⁡ Δ t → 0 1 Δ t f ( ξ 1 , t + Δ t ) ( α ( t + Δ t ) − α ( t ) ) = f ( α ( t ) , t ) α ′ ( t ) (6) \begin{aligned}&\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\alpha(t+\Delta t)}_{\alpha(t)}f(x,t+\Delta t)dx \\ =& \lim_{\Delta t \to 0}\frac{1}{\Delta t}f(\xi_1,t+ \Delta t)(\alpha(t + \Delta t)-\alpha(t)) \\ =& f(\alpha(t),t)\alpha^{\prime}(t)\end{aligned}\tag{6} ==Δt0limΔt1α(t)α(t+Δt)f(x,t+Δt)dxΔt0limΔt1f(ξ1,t+Δt)(α(t+Δt)α(t))f(α(t),t)α(t)(6) f ( x , t ) f(x,t) f(x,t)具有关于 t t t的偏导数,我们有 lim ⁡ Δ t → 0 1 Δ t ∫ α ( t ) β ( t ) [ f ( x , t + Δ t ) − f ( x , t ) ] d x = ∫ α ( t ) β ( t ) lim ⁡ Δ t → 0 [ f ( x , t + Δ t ) − f ( x , t ) Δ t ] d x = ∫ α ( t ) β ( t ) ∂ ∂ t f ( x , t ) d x (7) \begin{aligned}&\lim_{\Delta t \to 0}\frac{1}{\Delta t}\int^{\beta(t)}_{\alpha(t)}[f(x,t + \Delta t)-f(x,t)]dx \\ =&\int^{\beta(t)}_{\alpha(t)}\lim_{\Delta t \to 0}\Bigg[\frac{f(x,t+ \Delta t)-f(x,t)}{\Delta t}\Bigg]dx \\ =&\int^{\beta(t)}_{\alpha(t)}\frac{\partial}{\partial t}f(x,t)dx\end{aligned}\tag{7} ==Δt0limΔt1α(t)β(t)[f(x,t+Δt)f(x,t)]dxα(t)β(t)Δt0lim[Δtf(x,t+Δt)f(x,t)]dxα(t)β(t)tf(x,t)dx(7)综上所述,我们可以得到(1)式,证毕 □ \square
有了引理1,我们可以很容易的给出 f ( t ) f(t) f(t) t t t的导数,即下面的定理1。

[定理1]

[定理1] 设函数 α ( t ) , β ( t ) \alpha(t),\beta(t) α(t),β(t)在区间 [ t 0 , t 1 ] [t_0,t_1] [t0,t1]上可导,函数 φ ( x , t ) , ψ ( x , t ) \varphi(x,t),\psi(x,t) φ(x,t),ψ(x,t)在区域 D D D上连续,其中区域 D D D { ( x , t ) ∣ x ∈ [ α ( t ) , β ( t ) ] , t ∈ [ t 0 , t 1 ] } \{(x,t)|x\in [\alpha(t),\beta(t)],t \in [t_0,t_1]\} {(x,t)x[α(t),β(t)],t[t0,t1]},当取定 t ∈ [ t 0 , t 1 ] t\in [t_0,t_1] t[t0,t1]时, f ( x , y ) f(x,y) f(x,y)在相应区域 E = { ( x , y ) ∣ x ∈ [ α ( t ) , β ( t ) ] , y ∈ [ φ ( x , t ) , ψ ( x , t ) ] } E=\{(x,y)|x\in[\alpha(t),\beta(t)],y\in[\varphi(x,t),\psi(x,t)]\} E={(x,y)x[α(t),β(t)],y[φ(x,t),ψ(x,t)]}上连续,则有 F ( t ) = ∫ α ( t ) β ( t ) [ ∫ φ ( x , t ) ψ ( x , t ) f ( x , y ) d y ] d x (8) F(t)=\int^{\beta(t)}_{\alpha(t)}\Bigg[\int^{\psi(x,t)}_{\varphi(x,t)}f(x,y)dy\Bigg]dx\tag{8} F(t)=α(t)β(t)[φ(x,t)ψ(x,t)f(x,y)dy]dx(8) [ t 0 , t 1 ] [t_0,t_1] [t0,t1]上可导,且 F ′ ( t ) = d d t [ ∫ φ ( x , t ) ψ ( x , t ) f ( x , y ) d y ] d x = β ′ ( t ) ∫ φ ( β ( t ) , t ) ψ ( β ( t ) , t ) f ( β ( t ) , y ) d y − α ′ ∫ φ ( α ( t ) , t ) ψ ( α ( t ) , t ) f ( α ( t ) , y ) d y + ∫ α ( t ) β ( t ) [ ψ t ′ ( x , t ) f ( x , ψ ( x , t ) ) − φ t ′ ( x , t ) f ( x , φ ( x , t ) ) ] d x (9) \begin{aligned}F^{\prime}(t)&=\frac{d}{dt}\Bigg[\int^{\psi(x,t)}_{\varphi(x,t)}f(x,y)dy\Bigg]dx \\ &=\beta^{\prime}(t)\int^{\psi(\beta(t),t)}_{\varphi(\beta(t),t)}f(\beta(t),y)dy-\alpha^{\prime}\int^{\psi(\alpha(t),t)}_{\varphi(\alpha(t),t)}f(\alpha(t),y)dy \\ &+ \int^{\beta(t)}_{\alpha(t)}[\psi^{\prime}_{t}(x,t)f(x,\psi(x,t))-\varphi^{\prime}_{t}(x,t)f(x,\varphi(x,t))]dx\end{aligned}\tag{9} F(t)=dtd[φ(x,t)ψ(x,t)f(x,y)dy]dx=β(t)φ(β(t),t)ψ(β(t),t)f(β(t),y)dyαφ(α(t),t)ψ(α(t),t)f(α(t),y)dy+α(t)β(t)[ψt(x,t)f(x,ψ(x,t))φt(x,t)f(x,φ(x,t))]dx(9)证明: G ( x , t ) = ∫ φ ( t ) ψ ( t ) f ( x , y ) d y G(x,t)=\int^{\psi(t)}_{\varphi(t)}f(x,y)dy G(x,t)=φ(t)ψ(t)f(x,y)dy,则 F ( t ) = ∫ α ( t ) β ( t ) G ( x , t ) d x F(t)=\int^{\beta(t)}_{\alpha(t)}G(x,t)dx F(t)=α(t)β(t)G(x,t)dx
由引理1得 F ′ ( t ) = G ( β ( t ) , t ) β ′ ( t ) − G ( α ( t ) , t ) α ′ ( t ) + ∫ α ( t ) β ( t ) ∂ ∂ t G ( x , t ) d x (10) F^{\prime}(t)=G(\beta(t),t)\beta^{\prime}(t)-G(\alpha(t),t)\alpha^{\prime}(t)+\int^{\beta(t)}_{\alpha(t)}\frac{\partial}{\partial t}G(x,t)dx\tag{10} F(t)=G(β(t),t)β(t)G(α(t),t)α(t)+α(t)β(t)tG(x,t)dx(10)其中, ∂ ∂ t G ( x , t ) = d d t ∫ φ ( x , t ) ψ ( x , t ) f ( x , y ) d y = f ( x , ψ ( x , t ) ) ψ t ′ ( x , t ) − f ( x , φ ( x , t ) ) φ t ′ ( x , t ) (11) \frac{\partial}{\partial t}G(x,t)=\frac{d}{dt}\int^{\psi(x,t)}_{\varphi(x,t)}f(x,y)dy=f(x,\psi(x,t))\psi^{\prime}_{t}(x,t)-f(x,\varphi(x,t))\varphi^{\prime}_{t}(x,t)\tag{11} tG(x,t)=dtdφ(x,t)ψ(x,t)f(x,y)dy=f(x,ψ(x,t))ψt(x,t)f(x,φ(x,t))φt(x,t)(11)因此,带入得 F ′ ( t ) = β ′ ( t ) ∫ φ ( β ( t ) , t ) ψ ( β ( t ) , t ) f ( β ( t ) , y ) d y − α ′ ∫ φ ( α ( t ) , t ) ψ ( α ( t ) , t ) f ( α ( t ) , y ) d y + ∫ α ( t ) β ( t ) [ ψ t ′ ( x , t ) f ( x , ψ ( x , t ) ) − φ t ′ ( x , t ) f ( x , φ ( x , t ) ) ] d x (12) \begin{aligned}F^{\prime}(t)&=\beta^{\prime}(t)\int^{\psi(\beta(t),t)}_{\varphi(\beta(t),t)}f(\beta(t),y)dy-\alpha^{\prime}\int^{\psi(\alpha(t),t)}_{\varphi(\alpha(t),t)}f(\alpha(t),y)dy \\ &+ \int^{\beta(t)}_{\alpha(t)}[\psi^{\prime}_{t}(x,t)f(x,\psi(x,t))-\varphi^{\prime}_{t}(x,t)f(x,\varphi(x,t))]dx\end{aligned}\tag{12} F(t)=β(t)φ(β(t),t)ψ(β(t),t)f(β(t),y)dyαφ(α(t),t)ψ(α(t),t)f(α(t),y)dy+α(t)β(t)[ψt(x,t)f(x,ψ(x,t))φt(x,t)f(x,φ(x,t))]dx(12)证毕 □ \square
到此为止, ∫ t − τ m t ∫ s t x ˙ T ( v ) R x ˙ ( v ) d v d s \int^{t}_{t-\tau_m}\int^{t}_{s}\dot{x}^T(v)R\dot{x}(v)dvds tτmtstx˙T(v)Rx˙(v)dvds对时间 t t t的导数就只是定理1的一个特例。
对于 F ( t ) = ∫ α ( t ) β ( t ) [ ∫ φ ( x , t ) ψ ( x , t ) f ( x , y ) d y ] d x F(t)=\int^{\beta(t)}_{\alpha(t)}\Big[\int^{\psi(x,t)}_{\varphi(x,t)}f(x,y)dy\Big]dx F(t)=α(t)β(t)[φ(x,t)ψ(x,t)f(x,y)dy]dx,我们令 α ( t ) = t − τ m \alpha(t)=t-\tau_m α(t)=tτm β ( t ) = t \beta(t)=t β(t)=t φ ( t ) = x \varphi(t)=x φ(t)=x ψ ( t ) = t \psi(t)=t ψ(t)=t,则有 d d t ∫ t − τ m t ∫ s t x ˙ T ( v ) R x ˙ ( v ) d v d s = − ∫ t − τ m t x ˙ T ( v ) R x ˙ ( v ) d v + ∫ t − τ m t x ˙ T ( t ) R x ˙ ( t ) d t = − ∫ t − τ m t x ˙ T ( v ) R x ˙ ( v ) d v + τ m x ˙ T ( t ) R x ˙ ( t ) (13) \begin{aligned}&\frac{d}{dt}\int^{t}_{t-\tau_m}\int^{t}_{s}\dot{x}^T(v)R\dot{x}(v)dvds \\=& -\int^{t}_{t-\tau_m}\dot{x}^T(v)R\dot{x}(v)dv+\int^{t}_{t-\tau_m}\dot{x}^T(t)R\dot{x}(t)dt \\ =&-\int^{t}_{t-\tau_m}\dot{x}^T(v)R\dot{x}(v)dv+\tau_{m}\dot{x}^T(t)R\dot{x}(t)\end{aligned}\tag{13} ==dtdtτmtstx˙T(v)Rx˙(v)dvdstτmtx˙T(v)Rx˙(v)dv+tτmtx˙T(t)Rx˙(t)dttτmtx˙T(v)Rx˙(v)dv+τmx˙T(t)Rx˙(t)(13)推导完毕 □ \square


创作不易,希望大家支持,多多点赞收藏!!!!非常感谢!!!!
  • 17
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值