题目链接
题目描述:
在A,B两个城市之间设有N个路站(如下图中的S1,且N<100),城市与路站之间、路站和路站之间各有若干条路段(各路段数≤20,且每条路段上的距离均为一个整数)。
A,B的一条通路是指:从A出发,可经过任一路段到达S1,再从S1出发经过任一路段,…最后到达B。通路上路段距离之和称为通路距离(最大距离≤1000)。当所有的路段距离给出之后,求出所有不同距离的通路个数(相同距离仅记一次)。
例如:下图所示是当N=1时的情况:
从A到B的通路条数为6,但因其中通路5+5=4+6,所以满足条件的不同距离的通路条数为5。
数据结构:
N记录A,B间路站的个数
D[I][0]记录第I-1到第I路站间路段的个数
D[I][1],D[I][2]……记录每个路段距离
G[X]标记长度为X的通路是否可能
B数组在穷举过程中记录当前路
B[I]表示第I-1到第I路站之间选择哪一条路段
思路1:递归求解
思路2:迭代求解
源代码:
package com.sum;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Scanner;
import java.util.Set;
/**
* 题目描述:
在A,B两个城市之间设有N个路站(如下图中的S1,且N<100),城市与路站之间、路站和路站之间各有若干条路段(各路段数≤20,且每条路段上的距离均为一个整数)。
A,B的一条通路是指:从A出发,可经过任一路段到达S1,再从S1出发经过任一路段,…最后到达B。通路上路段距离之和称为通路距离(最大距离≤1000)。当所有的路段距离给出之后,求出所有不同距离的通路个数(相同距离仅记一次)。
例如:下图所示是当N=1时的情况:
* */
public class MaxRoadCount {
public static final int MAX_LOAD_COUNT=21;
public static int MAX_LOAD_SUM=1000;
public static int MAX_NODE_COUNT=100;
static Set<Integer> resultSet=new HashSet<Integer>();
int N;//A、B两城市中间的结点数
int D[][];//记录路段(结点)间的个数
//D[I][0] I-1~I路段个数
//D[I][1] D[I][2] 路段距离
int G[]=new int[1000];
int B[];
public static void main(String[] args) {
MaxRoadCount st=new MaxRoadCount();
st.init2();
long start=System.currentTimeMillis();
st.fun();
long end=System.currentTimeMillis();
System.out.println("所花时间:"+(end-start)+"ms");
}
public void init2(){
N=100;
generateNode(N);
B=new int[MAX_LOAD_SUM];
}
public void generateNode(int n){
D=new int[n+1][];
Random r=new Random();
for(int i=0;i<n+1;i++){
// int count=1+r.nextInt(20);
int count=20;
D[i]=new int[count+1];
D[i][0]=count;
for(int j=1;j<=count;j++){
D[i][j]=1+r.nextInt(10);
}
}
System.out.println("生成输出:");
for(int i=0;i<n+1;i++){
for(int j=1;j<=D[i][0];j++){
System.out.print(D[i][j]);
}
System.out.println();
}
}
public void input(){
Scanner s =new Scanner(System.in);
N=s.nextInt();
if(N<1||N>=MAX_NODE_COUNT)
{
System.out.println("Error");
return;
}
D=new int[N+1][];
for(int i=0;i<N+1;i++){
D[i][0]=s.nextInt();
if(D[i][0]<1||D[i][0]>MAX_LOAD_COUNT)
{
System.out.println("Error");
return;
}
for(int j=1;j<=D[i][0];j++){
D[i][j]=s.nextInt();
}
}
// System.out.println(D.length);
}
public void fun(){
int distance=0;
int i=-1;
long start=System.currentTimeMillis();
findRoad(i+1,distance);
long end=System.currentTimeMillis();
//
System.out.println("递归所花时间"+(end-start)+"ms");
// int sum=0;
// for(int j=0;j<MAX_LOAD_SUM;j++)
// sum+=G[j];
System.out.println("结果1:"+resultSet.size());
List<Integer> list=new ArrayList<Integer>(resultSet);
for(int j=0;j<list.size();j++)
System.out.print(list.get(j)+",");
System.out.println();
start=System.currentTimeMillis();
findRoadWithFor();
end=System.currentTimeMillis();
System.out.println("迭代所花时间"+(end-start)+"ms");
}
public void findRoadWithFor(){
// int a[]=D[0];
int a[]={};
for(int i=0;i<N+1;i++){
a=findSumRoadDistance(a,D[i]);
}
System.out.println("结果2:"+a.length);
for(int j=0;j<a.length;j++){
System.out.print(a[j]+",");
}
System.out.println();
}
/**
* 前一个路段的所有路长,和后一个路段的所有路长两两相加
* 去除重复
* */
public int[] findSumRoadDistance(int a[],int d[]){
Set<Integer> set=new HashSet<Integer>();
if(a.length==0){
for(int j=1;j<d.length;j++)
set.add(d[j]);
}else {
for(int i=0;i<a.length;i++){
for(int j=1;j<d.length;j++)
set.add(a[i]+d[j]);
}
}
Integer objects[]=(Integer[])set.toArray(new Integer[0]);
int result[]=new int[objects.length];
for(int i=0;i<result.length;i++)
result[i]=objects[i];
return result;
}
public void findRoad(int node,int distance){
if(node==N+1)
{
if(distance>MAX_LOAD_SUM)
return;
// System.out.println(distance);
// System.out.println(resultSet.size());
resultSet.add(distance);
// G[distance]=1;
return;
}
for(int j=1;j<=D[node][0];j++){
// System.out.println(node);
B[node]=j;
findRoad(node+1, D[node][j]+distance);
}
}
}