自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 书生浦语大模型实战营第二期 第七次课作业

Tips:不强制要求配置数据集对应榜单( leaderboard.xlsx ),可仅上传 README_OPENCOMPASS.md 文档。可以看到OpenCompass成功对模型进行了评测。

2024-04-30 20:35:06 289 1

原创 书生浦语大模型实战营第二期 第七次课笔记

上海人工智能实验室发布的大模型开源开放评测体系。特点开源可复现全面的能力维度丰富的模型支持分布式高效评测多样化评测范式灵活化拓展客观评测:自建客观数据集的步骤。主观评测:自建主观数据集的步骤。本节课详细介绍了OpenCompass评测体系,包括其重要性、特点、评测对象、工具架构、设计思路、评测方法、快速开始流程、环境配置、数据准备、启动评测、自定义数据集、数据污染评估以及大海捞针测试。

2024-04-30 20:30:40 275 1

原创 书生浦语大模型实战营第二期 第六次课笔记

Lagent 是一个轻量级的开源智能体框架,用于高效构建基于大型语言模型的智能体。它支持多种智能体范式和工具,如AutoGPT、ReAct等,并提供了Arxiv搜索、Bing地图、Google学术搜索等工具。

2024-04-27 19:23:16 428

原创 书生浦语大模型实战营第二期 第六次课作业

Tip结营必做基础作业;优秀学员或进入对应 SIG 需完成进阶作业。

2024-04-26 12:42:38 400 1

原创 书生浦语大模型实战营第二期 第四次课作业

记录复现过程并截图。

2024-04-24 23:46:48 219

原创 书生浦语大模型实战营第二期 第四次课笔记

本节内容涉及XTuner完整流程,包括数据集和模型使用、配置文件制作、训练、转换及整合。

2024-04-24 23:18:38 1906 1

原创 书生浦语大模型实战营第二期 第五次课作业

完成以下任务,并将实现过程记录截图:完成以下任务,并将实现过程记录截图:命令行客户端:

2024-04-11 11:11:30 391 1

原创 书生浦语大模型实战营第二期 第五次课笔记

LMDeploy功能:LMDeploy是一个用于压缩、部署和提供大型语言模型服务的工具。应用场景:适用于需要高效部署和管理LLM与VLM的场景,特别是在资源受限的环境中。本次课程提供了LMDeploy工具的详细介绍和实战部署指南,涵盖了从环境配置到服务部署、模型量化以及最佳实践的全过程。通过这些内容,学员可以学习到如何高效地部署和管理大型语言模型,以及如何通过量化技术优化模型的性能和资源使用。

2024-04-11 11:00:04 848 1

原创 书生浦语大模型实战营第二期 第三次课作业

在InternLM Studio上部署茴香豆技术助手是一个涉及多个步骤的过程,从环境配置到模型安装,再到知识库的创建和测试,每一步都至关重要。通过精心的配置和持续的维护,茴香豆能够有效地提供技术支持,帮助用户解决问题,提高工作效率。随着技术的不断进步,茴香豆的功能和性能也将不断优化,为用户提供更好的服务体验。

2024-04-10 01:16:22 2059

原创 书生浦语大模型实战营第二期 第三次课笔记

本节课介绍了RAG(Retrieval Augmented Generation)技术的基础知识。展示了如何使用茴香豆(Huixiangdou)搭建一个RAG智能助理。讲解了茴香豆的进阶用法,包括网络搜索、使用远程模型、搭建网页Demo等。RAG技术结合了检索和生成,通过检索相关信息片段来增强语言模型的回答能力。它能够解决大型语言模型在处理知识密集型任务时的挑战,如幻觉问题、过时知识、缺乏透明度和可追溯的推理过程。RAG技术允许基础模型实现非参数知识更新,无需额外训练即可掌握新领域的知识。

2024-04-10 00:46:30 495

原创 书生浦语大模型实战营第二期 第二次课作业

1.熟悉 huggingface 下载功能,使用 huggingface_hub python 包,下载 InternLM2-Chat-7B 的 config.json 文件到本地(需截图下载过程)可以看出它会使用python求解数据分析问题,且能解决简单的问题,让我们尝试一个复杂一点的。1.使用 InternLM2-Chat-1.8B 模型生成 300 字的小故事(需截图)复杂一点的数据分析还没成功过。不太会数据预处理,数据类型搞错了。先是找数据找了半天。

2024-04-03 15:57:13 278 1

原创 书生浦语大模型实战营第二期 第二次课笔记

介绍八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳等实战营优秀作品。- 通过InternLM2-Chat-7B运行Lagent智能体Demo。4. 实战:使用Lagent运行InternLM2-Chat-7B模型。- 启动InternLM-XComposer2-vl进行图片理解。- 运行InternLM2-Chat-7B模型的智能体Demo。- 部署InternLM2-Chat-1.8B模型进行智能对话。- 部署实战营优秀作品八戒-Chat-1.8B模型。

2024-04-03 12:24:47 459

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除