- 博客(7)
- 收藏
- 关注
原创 macbook去除microsoft自动更新
注意这个资源库是本地的,而不是~/Library这样的当前用户独享,一开始在当前用户这里就没找到。尝试访问:/Library/Application Support/Microsoft/每次打开电脑时都有这个自动更新的图标很烦人。(打开“前往文件夹”窗口)查阅资料看怎么把它弄掉。
2025-10-13 15:43:41
217
原创 DUN-SA
如何利用一张清晰的、完整的MRI图像(参考模态),来快速重建另一张扫描不完整的图像(目标模态),尤其是在这两张图像没有完全对齐的情况下。现有的方法通常先把图像对齐,再进行重建,可能对齐与重建的结合不够好,而且难以解释其工作原理。作者提出了一种名为DUN-SA的深度展开网络,将“空间对齐”和“图像重建”这两个任务融合在一个可解释的框架中。网络在端到端的训练过程中,边对齐、边重建,让参考图像逐步对齐目标图像,并利用对齐后的信息来更好地重建目标图像。
2025-09-23 20:56:29
736
原创 论文阅读:ESPIRiT
并行成像能从欠采样的多线圈数据中重建图像。,显式使用线圈敏感度信息;,它利用在 k 空间中学习到的相关性。本文的目的是要阐明它们之间的关系,并开发和评估一种改进的算法。对于一个矩阵A,其零空间是指所有与A相乘后结果为零向量的向量集合。:用来捕捉k空间中数据点之间的工具,简而言之,就是由 ACS(auto-calibration signal,自校准信号)区域的 k 空间数据拼接而成的矩阵。理论分析表明:k 空间中的相关性被编码在中。SENSE 和 GRAPPA 本质上都将解限制在一个由张成的子空间中。
2025-09-22 10:32:03
845
原创 综述阅读:Reconstruction techniques for accelerating dynamic cardiovascular magnetic resonance imaging
PILS假设线圈灵敏度分布严格局部化且无重叠(如每个线圈仅 “观察” 图像的1/R区域),此时可通过线圈灵敏度直接解算欠采样数据中的混叠信号。例如,若R个线圈分别对应图像的不同区域,则可通过R倍欠采样结合线圈信息重建完整图像,避免伪影。(a)每个 coil 只对 y 方向上一小块区域敏感,(b)对应 k 空间采样点,(c)对每个 coil 的稀疏 k-space 做逆傅里叶变换,会得到一个压缩了的图像,(d)把每个 coil 得到的小图像,根据它的已知位置,移到全图的正确位置。
2025-09-17 19:38:43
988
原创 论文阅读:GENRE-CMR
文章标题为:GENRE-CMR: Generalizable Deep Learning for Diverse Multi-Domain Cardiac MRI Reconstruction前置文章为:An All-in-one Approach for Accelerated Cardiac MRI Reconstruction从前置文章开始写起。
2025-09-14 16:32:04
598
原创 Systematic Review and Meta-analysis of AI-driven MRI Motion Artifact Detection and Correction
论文阅读比较长的一篇综述。
2025-09-11 19:03:41
1044
原创 HITWH2024软件测试与质量保证wds
没事干清理一下记录,以前这些整理都是在飞书上自己和同学用的。这门课考前也参考了csdn上同学的总结。这里在随便写点。wds的这门课一直为大家所诟病,21级软件的这次考试更是nt,好几个去参加nju夏令营的缓考的爽死了。选填判断简答一直是题库出题,然后这次简答题自己瞎出了几道,大题的话,答疑时是一种说法,考完试又是一种说法,听了答疑的被耍的团团转。最后一道37分看程序大题直接是个错题,创新性拉满。总结来说,一周速成即可。选填判断肯定原题,直接背选项关键词都行。简答也得背,同时准备点套话瞎扯用。
2024-11-27 09:22:42
784
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅