总时间限制: 内存限制:
1000ms 65536kB
描述
利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。
输入
输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
输出
输出一行,表示方程的解。
若b2 = 4 * a * c,则两个实根相等,则输出形式为:x1=x2=...。
若b2 > 4 * a * c,则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。
若b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2*a), 虚部 = sqrt(4*a*c-b*b) / (2*a)
所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。
样例输入
样例输入1
1.0 2.0 8.0
样例输入2
1 0 1
样例输出
样例输出1
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i
样例输出2
x1=0.00000+1.00000i;x2=0.00000-1.00000i
源代码
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double a, b, c, n, m, p = pow(10,-7);
scanf("%lf%lf%lf", &a, &b, &c);
n = (-b + sqrt(b*b - 4 * a*c)) / (2 * a);
m = (-b - sqrt(b*b - 4 * a*c)) / (2 * a);
if (b * b == 4 * a * c)
printf("x1=x2=%.5lf", n);
else if (b * b > 4 * a *c)
{
if (n > m)
printf("x1=%.5lf;x2=%.5lf", n, m);
else
printf("x1=%.5lf;x2=%.5lf", m, n);
}
else
{
printf("x1=%.5lf+%.5lfi;x2=%.5lf-%.5lfi", -b / (2 * a) + p, sqrt(4 * a*c - b*b) / (2 * a), -b / (2 * a) + p, sqrt(4 * a*c - b*b) / (2 * a));
}
return 0;
}