中国历史天气数据

一、数据简介

  迄今为止,人类的经济活动主要还是在自然条件下进行的,特别是维系人类生命的农业,其受到气候条件的极大制约,且地区经济与行业的发展,如饮食、电器、服装、医药、交通等领域也与气象信息关系密切。人们可以利用气象信息作为从事经济活动的决策依据之一,安排生产经营活动,趋利避害,减少经济损失,提高经济效益。

  国际上早在1750年就有学者提出气温越高的地区越贫困的观点,之后这方面的议题也一直受到国际上的广泛关注。作为一个古老又崭新的研究领域,气象经济有着广泛的社会效益和显著的经济效益。弗里德黑姆·施瓦茨在其著作《气候经济学》中指出,天气在全世界五分之四的经济活动中扮演着决定性的角色。

  我国关于经济发展的研究对气象因素的分析还有所欠缺,以此为契机,CnOpenData平台推出历史天气数据,囊括中国所有城市(含县)自2011年以来 的历史天气数据,指标包含温度、天气、风向风力、空气质量等内容。

二、时间区间

本数据包含2020.01.01前所有天气数据
注:

  1. 天气数据从2011.01.01开始

  2. 空气质量数据从2016.01.01开始

三、数据展示与说明

字段名称
省份
城市
区县
日期
最高温度
最低温度
天气情况
风向
风力
空气质量指数
空气质量
空气质量等级

四、样本数据

省份城市区县日期最高温度最低温度天气情况风向风力空气质量指数空气质量空气质量等级
安徽合肥合肥4324425℃21℃雷阵雨~中雨东南风3-4级742
安徽合肥合肥4324528℃20℃大雨~中雨西北风1-2级962
安徽合肥合肥4324626℃20℃阴~多云东北风1-2级481
安徽合肥合肥4324729℃20℃多云西北风1-2级802
安徽合肥合肥4324823℃19℃西南风1-2级122轻度污染3
安徽合肥合肥4324927℃20℃多云~阴南风1-2级126轻度污染3
安徽合肥合肥4325027℃20℃阴~小雨南风1-2级942
安徽合肥合肥4325125℃17℃多云东南风1-2级702
安徽合肥合肥4319127℃15℃多云南风1-2级123轻度污染3
安徽合肥合肥4319226℃15℃多云南风1-2级832
安徽合肥合肥4319327℃12℃多云~雷阵雨东南风1-2级812
安徽合肥合肥4319418℃6℃小雨东北风3-4级812
安徽合肥合肥4319512℃6℃大雨~小雨北风1-2级441
安徽合肥合肥4319617℃3℃多云西北风3-4级742

五、相关文献

  • Mark Borgschulte, Eric Zou, and David Molitor, 2022, “Air Pollution and the Labor Market: Evidence from Wildfire Smoke”, NBER Working Paper.

  • 陈诗一、林伯强,2019:《中国能源环境与气候变化经济学研究现状及展望——首届中国能源环境与气候变化经济学者论坛综述》,《经济研究》第7期。

  • 方虹、何琦、张芳,2015:《尼古拉斯·斯特恩对气候变化经济学的贡献》,《经济学动态》第5期。

  • 向国成、李宾、田银华,2011:《威廉·诺德豪斯与气候变化经济学——潜在诺贝尔经济学奖得主学术贡献评介系列》,《经济学动态》第4期。

  • 薄凡、庄贵阳、禹湘,2018:《气候变化经济学研究前沿与教材体系建设——第二届气候变化经济学学术研讨会综述》,《经济研究》第11期。

  • 薄凡、庄贵阳、禹湘、陈湘艳,2017:《气候变化经济学学科建设及全球气候治理——首届气候变化经济学学术研讨会综述》,《经济研究》第10期。

六、数据更新频率

年度更新(CnOpenData 中国历史天气数据

好的,您想了解如何用 Python 爬取历史天气数据,是吗? 首先,需要确定您想要爬取哪个地区的历史天气数据。一般来说,可以通过查询该地区的气象局或气象网站获取历史天气数据。 接着,可以使用 Python 中的 requests 库来发送 HTTP 请求,获取网页源代码。然后,可以使用 BeautifulSoup 库来解析网页源代码,提取出所需的天气数据。 以下是一个简单的示例代码,用于爬取中国天气网上北京市 2019 年 1 月份的历史天气数据: ``` python import requests from bs4 import BeautifulSoup url = 'http://www.weather.com.cn/weather/101010100.shtml#dt' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} r = requests.get(url, headers=headers) r.encoding = 'utf-8' soup = BeautifulSoup(r.text, 'html.parser') weather_list = soup.select('.t li') for weather in weather_list: date = weather.select('.time')[0].text weather_detail = weather.select('.temp')[0].text.strip() print(date, weather_detail) ``` 以上代码中,我们首先通过 requests 库发送了一个 GET 请求,获取了北京市天气网的网页源代码。然后,使用 BeautifulSoup 库解析网页源代码,提取出了 2019 年 1 月份的天气数据,并打印输出了日期和天气详情。 需要注意的是,不同的网站网页结构不同,需要根据具体情况修改代码。同时,需要注意网站的 robots.txt 文件,不要过度访问网站,以免被封 IP 或其他限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值