- 博客(25)
- 收藏
- 关注
原创 由于对象流解析的数据与流的头部信息不匹配导致异常 java.io.StreamCorruptedException: invalid stream header: 7372001
对象,但服务器端使用了两个不同的对象输入流同时读取这个输出流,这导致两个输入流读取的顺序可能不同,从而导致异常。对象输出流序列化数据时,会把数据的数据格式(可以理解为数据存在的形式、在代码中的位置等等)写在流的对象头中,如果读取时的顺序与写入时的顺序不一致,或者在写入或读取对象头和对象内容之间更改了流的状态,则会出现。当使用对象流时,对象头和对象内容一起被写入输出流,而读取时也需要以相同的顺序读取对象头和对象内容。但是2号对象拿到的这张表格和1号对象拿到的是一样的,上面写了。而当1号对象输入流读取了。
2023-04-10 18:35:04 3045
原创 梅科尔工作室——MySQL基础学习---第一章
MySQL学习查询当前数据库:创建数据库:删除数据库:使用数据库:2、表操作查询当前数据库所有表:查询表结构:查询指定表的建表语句:创建表:DML(数据操作语言)添加数据指定字段:全部字段:批量添加数据:修改数据:例:删除数据:语法:基础查询查询多个字段:设置别名:去除重复记录:转义:/ 之后的_不作为通配符语法:......
2022-07-09 20:51:12 132
原创 VGG多种网络结构的搭建以及感受野的计算
前言本学习笔记参考自B站up主霹雳吧啦Wz代码均来自导师github开源项目WZMIAOMIAO/deep-learning-for-image-processing: deep learning for image processing including classification and object-detection etc. (github.com)一、VGG网络结构vgg有多种网络结构其中常用的是VGG16的网络结构网络中的亮点:通过堆叠多个3×3得到卷积核来代替大尺度卷
2022-05-31 10:22:43 309
原创 AlexNet网络的搭建以及训练花分类
前言本学习笔记参考自B站up主霹雳吧啦Wz代码均来自导师github开源项目WZMIAOMIAO/deep-learning-for-image-processing: deep learning for image processing including classification and object-detection etc. (github.com)视频链接在这里:2.1 pytorch官方demo(Lenet)_哔哩哔哩_bilibiliAlexNet网络结构AlexNet是20
2022-05-18 15:52:55 1402
原创 LeNet——训练和预测篇
前言本学习笔记参考自B站up主霹雳吧啦Wz代码均来自其github开源项目WZMIAOMIAO/deep-learning-for-image-processing: deep learning for image processing including classification and object-detection etc. (github.com)视频链接在这里:2.1 pytorch官方demo(Lenet)_哔哩哔哩_bilibiliLeNet——训练和预测篇2、trian老
2022-05-11 23:21:46 653
原创 ModelArts的基本使用
目录OBS桶的使用 AI gallery数据集下载 ModedlArts自动学习1、OBS桶可在网页端打开,创建桶后进行文件存储2、AI gallery 使用可在数据集里面下载,这里我们先下一个四分类花的数据集选择刚刚创建的OBS桶3、在线学习使用选择创建的类型,四分类花选择图像分类选择仅限数据集,输入位置为刚刚下到OBS桶中的数据集,输出位置自定out3.1 分类问题可选择新增标签 最后进行训练...
2022-05-11 13:46:02 251
原创 pytorch官方demo(LeNet)——model篇
前言以下文章均为学习笔记,目的是加强自己的记忆,同时希望帮助更多的学习者理解视频中的内容是跟着一位优秀的b站up主霹雳吧啦Wz学习的附上视频链接:(2.1 pytorch官方demo(Lenet)_哔哩哔哩_bilibili另外笔记是模仿另一位博主,小白刚开始写笔记附上文章链接:(5条消息) pytorch图像分类篇:2.pytorch官方demo实现一个分类器(LeNet)_Fun’的博客-CSDN博客_pytorch图像分类如有侵权联系我删除pytorch官网入门demo——LeNet图
2022-05-10 00:22:27 2058
原创 卷积基础知识
卷积层什么是卷积核混合两桶信息的流程,一种特征提取的手段信息卷积核(初始值随机,由反向传播更新)运行原理讲卷积核在图片信息上进行滑动,相乘得出特征值卷积过程中滑动超出原始范围怎么办填充卷积特性局部感知小区域滑动权值共享在卷积核滑动的过程中卷积核值不变卷积核深度与输入特征层深度相同输出的卷积层的深度与卷积核相同激活函数为什么要用激活函数每一层中的输入输出都是线性组合,要具备非线性的解决问题的
2022-05-08 22:10:30 550
原创 卷积神经网络中的误差计算和梯度更新
卷积神经网络中的误差计算和梯度更新一、误差的计算二、误差的反向传播目的将误差反向传播到每个参数,得到每个参数的损失梯度三、权重的更新1.公式2.采用分批次样本求解的原因实际应用中算计往往不够,内存也不足指向当前批次(batch)最优解3.优化器optimazerSGD优化器公式:α为学习率,g(wt)是t时刻对参数w的损失梯度缺点:1、容易收到噪声的干扰,梯度方向变向2、可能陷入局部最优解,如图红线部分陷入鞍SGD
2022-05-08 18:23:04 1284
原创 Markdown简单使用
Markdown学习1、代码块```语言名称2、标题// 标题# 一级标题## 二级标题### 三级标题#### 四级标题##### 五级标题###### 六级标题3、字体// 加粗**加粗**// 代码高亮显示==高亮==// 删除线 ~~被删除的字体~~// 斜体*斜体内容*4、引用语法// 引用语法>作者:名称>>作者:名称>>>作者:名称5、分割线//分割线---//分割线2***6、图片
2022-05-08 14:56:31 250
原创 网页培训7
1、内置对象1.1 字符串操作 1.2 Math 1.3获取时间 2、对象 1.3创建对象 2、获取对象属性 3、对象的序列化和反序列化 ...
2022-02-10 19:07:25 263
原创 网页前端培训5
1、 js的基本使用方式1.1 js的三种使用方式 案例使用:2、基础语法 1、语句 3、 变量 赋值:var a = 0; 动态弱类型语言,可以声名任意类型 3.1 undefined情况 1、变量只声名未赋值 2、 需要形参的函数未返回实参 3.2 数据类...
2022-02-08 20:54:26 159
原创 网页前端培训第三课
1.CSS选择器 1.1 基本语法 选择器名{ 属性:属性值 ...... } 1.2 基本使用 1.2.1 三种使用方式 1.行内样式:直接写在标签里,通过style定义样式 2.内部样式:...
2022-02-05 23:28:33 425
原创 网页前端培训第二课
1、表单 1.1 form标签 表单标签,块级元素,自动换行,将数据传向服务器 常用属性:action 表单提交地址 id 唯一标识 name 名称 targe 表单提交的打开方式 ...
2022-02-05 14:46:43 315
原创 第一次网页前端培训笔记【HTML常用标签】
一、安装 Hbuilder X二、学习视频:B站学习视频https://www.bilibili.com/video/BV1sf4y1k7dr?p=1三、基础语法 3.1 标签 3.1.1 单标签 < >有属性(文本大小,粗细等等),无属性3.2.2 双标签 < >...< > 3.2 整体结构 标记头区<head>...<head>、内容区<...
2022-02-03 16:26:48 644
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人