【打卡第241道】【动态规划DP01背包】【leetCode高频】:1049. 最后一块石头的重量 II

1、题目描述

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

2、算法分析

尽量使石头分成重量相同的两堆,相互碰撞之后的剩下的石头最小。而且本题符合01背包,每一块石头只能只用一次。

本题物品的重量为store[i],物品的价值也为store[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

1、定义数组dp

dp[j]是容量为j的背包,最多可以背dp[j]这么重的石头。

2、确定递推公式

01背包:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);其实重量和价值就是石头的重量

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3、dp数组初始化

重量不是负数,所以,初始化为0。因为我们定义的是整型的数组,所以默认元素为0。

4、确定遍历顺序

先遍历物品,再遍历背包

for (int i = 0; i < stones.size(); i++) { // 遍历物品
    for (int j = target; j >= stones[i]; j--) { // 遍历背包
        dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
    }
}

两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

3、代码实现

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for(int s : stones){
            sum += s;
        }
        // 因为尽可能的分为和相等的两份。进行碰撞
        int target = sum / 2;
        // dp[j]:容量为j的背包,最多可以被dp[j]这么重的石头
        int[] dp = new int[target + 1];

        for(int i = 0;i < stones.length;i++){
            // 遍历重量
            for(int j = target;j >=stones[i];j--){
                dp[j] = Math.max(dp[j],dp[j - stones[i]] + stones[i]);
            }
        }
        // 两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。最后剩下的是sum - 2*dp[target]
        return sum - dp[target] - dp[target];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值