AT1278 Counting on a Triangle 题解

题意

一个第 n n n 行有 n n n 个点的矩阵,其规律为每个点的值为每个点横坐标与纵坐标的乘积,求第 A A A 行到第 B B B 行所有点的值的和(包括 A A A B B B 两行),结果 m o d    1000000007 \mod1000000007 mod1000000007

暴力做法

枚举每个数并累加取模即可,显然,复杂度 Θ ( n 2 ) \Theta(n^2) Θ(n2) 的暴力会 TLE,因为数据范围是 1 0 6 10^6 106

优化

仔细观察这个矩阵,我们可以一行一行考虑,

对于第 n n n 行,每个点的坐标分别为 ( 1 , n ) , ( 2 , n ) , ( 3 , n ) ⋯ ( n − 1 , n ) , ( n , n ) (1,n),(2,n),(3,n)\cdots(n-1,n),(n,n) (1,n),(2,n),(3,n)(n1,n),(n,n)

这些点的值的和为 n + 2 n + 3 n + ⋯ + ( n − 1 ) n + n 2 n + 2n + 3n + \cdots + (n-1)n + n^2 n+2n+3n++(n1)n+n2

提取公因数后得 n ( 1 + 2 + 3 + ⋯ + n − 1 + n ) n(1 + 2 + 3 + \cdots + n-1 + n) n(1+2+3++n1+n)

因此问题就转化为了求这个等差数列的和。

运用我们数学课的知识,对一个等差数列求和,其公式为 n ( n + 1 ) 2 \frac{n(n+1)}{2} 2n(n+1)

再回到暴力解法,原来的第二层循环就可以替换为等差数列求和,这时就只有一重循环了,时间复杂度 Θ ( n ) \Theta(n) Θ(n)

代码

分析之后代码就很好写了,注意取模,虽然答案再 int 范围内,但是在计算过程中可能会超出 int 范围,所以开 long long 会更保险。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int mod = 1000000007;
ll a, b, ans;
int main() {
	scanf("%lld%lld", &a, &b);
	for(ll i = a; i <= b; i++) {
		ans += (i * (i * (i + 1) / 2) % mod) % mod;
		ans %= mod;
	}
	printf("%lld\n", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值