《machine learning》3线性代数

这篇博客介绍了矩阵和向量的基本概念,包括矩阵的定义、元素表示以及向量的表示。详细阐述了矩阵的加减法和标量乘法,并强调了矩阵乘法的规则,特别是矩阵相乘时的维度匹配条件。此外,还提到了矩阵乘法的性质,如不满足交换律,以及单位矩阵的概念。最后讨论了逆矩阵和转置的概念。博客内容适用于理解基础线性代数知识,特别是如何通过矩阵运算预测多个变量的结果。
摘要由CSDN通过智能技术生成

3.1 矩阵和向量

矩阵Matrix : Recrangular array of numbers
R 4 ∗ 2 R^{4*2} R42:4行2列矩阵
矩阵的项: A i , j A_{i,j} Ai,j矩阵A第i行j列的元素
A = [ A 1 , 1 A 1 , 2 A 2 , 1 A 2 , 2 A 3 , 1 A 3 , 2 ] A=\begin{bmatrix}A_{1,1}&A_{1,2}\\A_{2,1}&A_{2,2}\\A_{3,1}&A_{3,2}\\ \end{bmatrix} A=A1,1A2,1A3,1A1,2A2,2A3,2

向量Vector: An n x 1matrix 只有一列的矩阵
y n , 1 y_{n,1} yn,1
y 1 y1 y1 :第一个元素(第一行的那个元素)
y = [ y 1 y 2 y 3 y 4 ] y=\begin{bmatrix}y_1 \\ y_2\\y_3\\y_4\\ \end{bmatrix}\quad y=y1y2y3y4 y = [ y 0 y 1 y 2 y 3 ] y=\begin{bmatrix}y_0 \\ y_1\\y_2\\y_3\\ \end{bmatrix} y=y0y1y2y3
大写字母表示矩阵,小写字母表示数字、向量、标量等

3.2 加减法和标量乘法

矩阵加法:两个矩阵对应元素相加。相加矩阵维度必须相等
标量乘法:矩阵中每个元素都乘标量
先乘除后加减

3.3 矩阵向量乘法

A a , n ∗ B n , b = C a , b A_{a,n}*B_{n,b}=C_{a,b} Aa,nBn,b=Ca,b
矩阵 A a ∗ n A_{a*n} Aan与矩阵 B n ∗ b B_{n*b} Bnb相乘,A矩阵的列数必须等于B矩阵的行数。
在这里插入图片描述
四组房子的size,用三个不同参数的预测函数,使用一次矩阵乘法得到三组不同的四个房价预测
在这里插入图片描述

3.4 矩阵乘法的性质

矩阵不满足交换率(单位矩阵除外)
单位矩阵:对角元素为1

3.5 逆和转置

A A − 1 = A − 1 A = 1 AA^{-1}=A^{-1}A=1 AA1=A1A=1方阵才有逆矩阵(元素全为0也没)
A 3 ∗ 2 A T = B 2 ∗ 3 A_{3*2}\quad A^T=B_{2*3} A32AT=B23

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值