矩阵乘法

问题描述

矩阵乘法

算法实现

/**
* 矩阵乘法
* @param A,为n × m矩阵
* @param B,为m × p矩阵
* @return 结果为n × p矩阵
*/
public static long[][] multiply(long[][] A, long[][] B) {
   final int n = A.length;//A的行数
   final int m = A[0].length;//A的列数
   if (m != B.length) throw new IllegalArgumentException();
   final int p = B[0].length;

   long[][] result = new long[n][p];//新矩阵的行数为m1的行数,列数为m2的列数

   for (int i = 0;i < n;i++) {//A的每一行
       for (int j = 0;j < p;j++) {//B的每一列
           for (int k = 0;k < m;k++) {
               result[i][j] += A[i][k] * B[k][j];
           }
       }
   }
   return result;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值