LeetCode 55.跳跃游戏

这篇博客探讨了如何利用动态规划、状态压缩和贪心算法来解决LeetCode上的跳跃游戏问题。作者给出了三种不同的解决方案,并详细解释了每种方法的思路。动态规划通过维护一个dp数组,记录每个位置能达到的最远距离;状态压缩通过保存当前位置所能达到的最远位置,逐步更新;贪心算法则每次选取当前能跳到的最远位置。所有方法的目标都是判断是否能到达数组的最后一个下标。
摘要由CSDN通过智能技术生成

https://leetcode-cn.com/problems/jump-game/
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

思路:

  1. 动态规划
    设dp[i]为在 i 处能够到达的最远距离,这个距离与dp[i - 1]有关,是dp[i - 1]与 i+nums[i]中较大的那个。
    在循环过程中必须保证 i 比dp[i - 1]小,即上一步可以到达i,否则没有意义。
    最后如果dp的最后一位可以到达数组的最后一位,则返回true。
var canJump = function(nums) {
    let n = nums.length;
    if (n === 1) return true;
    let dp = new Array(n).fill(0);
    dp[0] = nums[0];
    for (let i = 1; i < n; i++) {
        if (i <= dp[i - 1]) {
            dp[i] = Math.max(dp[i - 1], nums[i] + i)
        }
    }
    return dp[n - 1] >= n - 1;
};

状态压缩

var canJump = function(nums) {
    let n = nums.length;
    if (n === 1) return true;

    let spot = nums[0];
    for (let i = 1; i < n; i++) {
        if (i <= spot) {
            spot = Math.max(spot, nums[i] + i)
        }
    }
    return spot >= n - 1;
};
  1. 贪心算法
    不去关注每一步能跳跃到的位置,而是找每一步能够跳跃到的最远位置,不断覆盖这个最远值。如果最后这个最远值可以到达数组最后一位,那么就可以返回true。
var canJump = function(nums) {
    if (nums.length === 1) return true;
    let spot = nums[0];
    for (let i = 0; i <= spot; i++) {
        spot = Math.max(spot, i + nums[i]);
        if(spot >= nums.length - 1) {
            return true;
        }
    }
    return false;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值