连续子数组的最大和问题(五种解法)

这篇博客介绍了如何使用分治法、动态规划、前缀和数组、暴力法和扫描法来解决寻找整型数组中连续子数组最大和的问题。博主详细阐述了每种方法的思路、代码实现及时间复杂度,并通过一个实例展示了不同解法的运行结果。重点讨论了分治法和动态规划法这两种时间复杂度为O(nlogn)和O(n)的方法。
摘要由CSDN通过智能技术生成

昨天(2021年5月29日)参加了软考软件设计师的考试,试卷上出现了一道算法题,问:连续子数组最大和的分治解法的时间复杂度,考完正好记录总结一下这道算法题。

求连续子数组的最大和

题目描述:
输入一个整型数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。

在这里插入图片描述
比如上面这个数组的子数组的最大和为187,从下标3到下标7的位置。(本文中数组下标从1开始)

思路

比较常规的思路是暴力(O(n3))、前缀和数组(O(n2))两种,但是时间复杂度比较高,这题也可以用分治的策略做,时间复杂度O(nlogn),还有两种时间复杂度为O(n)的做法,一种是动态规划,另一种是扫描法。这题需要掌握O(n)的解法。

解法

解法一:暴力法 O(n3)

int MaxSumOfSub1(){
    int res=-INF;
    for(int i=1;i<=cnt;i++){
        for(int j=i+1;j<=cnt;j++){
            int sum=0;
            for(int k=i;k<=j;k++)
                sum+=nums[k];
            res=max(res,sum);
        }
    }
    return res;
}

解法二:前缀和数组 O(n2)

int MaxSumOfSub2(){
    int res=-INF;
    int sum[N];
    for(int i=1;i<=cnt;i++)
        sum[i]=sum[i-1]+nums[i];
    for(int i=1;i<=cnt;i++)
        for(int j=i+1;j<=cnt;j++)
            res=max(res,sum[j]-sum[i-1]);
    return res;
}

解法三:分治法 O(nlogn)

所谓分治法,是指将一个问题分解为两个子问题,然后分而解决之。具体步骤如下:
先将数组分为两个等长的子数组a, b;
在这里插入图片描述

分别求出两个数组a,b的连续子数组之和;
在这里插入图片描述
还有一种情况(容易忽略):有可能最大和的子数组跨越两个数组;
在这里插入图片描述

最后比较ma, mb, mc,取最大即可。

在计算mc时,注意:mc必定包含总区间的中间元素,因此求mc等价于从中间元素开始往左累加的最大值 + 从中间元素开始往右累加的最大值

int MaxSumOfSub3(int l,int r){
    if(l==r) return nums[l];
    int mid=(l+r)/2;
    //计算Ma,Mb的情况
    int maxa=MaxSumOfSub3(l,mid);
    int maxb=MaxSumOfSub3(mid+1,r);

    //计算子数组跨越两个子数组(Mc)的情况
    int maxc,lmax=0,rmax=0,sum=0;
    for(int i=mid;i>=l;i--){//从中间元素开始往左累加的最大值
        sum+=nums[i];
        lmax=max(lmax,sum);
    }
    sum=0;
    for(int i=mid+1;i<=r;i++){从中间元素开始往右累加的最大值
        sum+=nums[i];
        rmax=max(rmax,sum);
    }
    maxc=lmax+rmax;
    
    return max(maxc,max(maxa,maxb));
}

解法四:动态规划法 O(n)

dp[i]表示以下标i指向的元素结尾的所有子数组的最大和
状态转移方程:dp[i] = max(dp[i-1]+nums[i],nums[i])
最后的答案:ans=max(dp[i])
这题的dp思路和最长上升子序列类似,倒像是简化版的,这里第i个状态只从第i-1个状态转移过来。

int MaxSumOfSub4(){
    int res=-INF;
    int dp[N];
    dp[0]=0;
    for(int i=1;i<=cnt;i++){
        dp[i]=max(dp[i-1]+nums[i],nums[i]);
        res=max(dp[i],res);
    }
    return res;
}

解法五:扫描法 O(n)

当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。

int MaxSumOfSub5(){
    int res=-INF,sum=0;
    for(int i=1;i<=cnt;i++){
        if(sum<0){
            sum=nums[i];
        }else{
            sum+=nums[i];
        }
        res=max(res,sum);
    }
    return res;
}

运行结果

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f,N=101000;
int nums[]={0,31,-41,59,26,-53,58,97,-93,-23,84};//0不算,下标从1算
int cnt=10;

int main(){
    printf("暴力法:%d\n",MaxSumOfSub1());
    printf("前缀和数组:%d\n",MaxSumOfSub2());
    printf("动态规划:%d\n",MaxSumOfSub4());
    printf("分治法:%d\n",MaxSumOfSub3(1,cnt));
    printf("扫描法:%d\n",MaxSumOfSub5());

    return 0;
}

在这里插入图片描述

  • 58
    点赞
  • 155
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 27
    评论
解法1:暴力枚举 通过枚举所有的连续数组,计算它们的和,最后返回最大的和。 时间复杂度:O(n^2) 代码: class Solution: def maxSubArray(self, nums: List[int]) -> int: max_sum = float('-inf') for i in range(len(nums)): cur_sum = 0 for j in range(i, len(nums)): cur_sum += nums[j] if cur_sum > max_sum: max_sum = cur_sum return max_sum 解法2:动态规划 我们可以用 dp[i] 表示以第 i 个元素结尾的最大连续数组的和,那么 dp[i] 可以由 dp[i-1] 转移得到: dp[i] = max(dp[i-1] + nums[i], nums[i]) 时间复杂度:O(n) 代码: class Solution: def maxSubArray(self, nums: List[int]) -> int: dp = [0] * len(nums) dp[0] = nums[0] max_sum = nums[0] for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum 解法3:分治法 将数组分成左右两部分,分别求出左半部分的最大数组、右半部分的最大数组以及跨越中心的最大数组,最后返回三者中的最大值。 时间复杂度:O(nlogn) 代码: class Solution: def maxSubArray(self, nums: List[int]) -> int: return self.helper(nums, 0, len(nums)-1) def helper(self, nums, left, right): if left > right: return float('-inf') mid = (left + right) // 2 left_max = self.helper(nums, left, mid-1) right_max = self.helper(nums, mid+1, right) cross_max = self.crossMax(nums, left, mid, right) return max(left_max, right_max, cross_max) def crossMax(self, nums, left, mid, right): left_max = float('-inf') cur_sum = 0 for i in range(mid, left-1, -1): cur_sum += nums[i] left_max = max(left_max, cur_sum) right_max = float('-inf') cur_sum = 0 for i in range(mid+1, right+1): cur_sum += nums[i] right_max = max(right_max, cur_sum) return left_max + right_max 解法4:贪心算法 我们可以从左到右遍历数组,记录当前连续数组的和 cur_sum 和最大连续数组的和 max_sum,如果 cur_sum 加上下一个数 nums[i] 小于 nums[i],那么从 nums[i] 开始重新计算 cur_sum。每次更新 max_sum,最后返回 max_sum 即可。 时间复杂度:O(n) 代码: class Solution: def maxSubArray(self, nums: List[int]) -> int: cur_sum = max_sum = nums[0] for i in range(1, len(nums)): cur_sum = max(nums[i], cur_sum+nums[i]) max_sum = max(max_sum, cur_sum) return max_sum
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weiambt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值