实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2^-2 = 1/2^2 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-2^31 <= n <= 2^31-1
-10^4 <= x^n <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
说实话,有被恶心到。
原理如下(总之就是将x^n分为2个x^(n/2)相乘,但是如果n为奇数,那么除了2个x^(n/2)相乘还需要再乘一个x)
PS 图为转载,源地址可以看水印!
最开始再处理n为负数的时候这样写了:
if (n < 0) return myPow(1.0/x, -n);
但是会出现数据溢出的情况,n为-2147483648的话转为正数是存不下的。
于是去看了题解。。像这样展开写的话会超时,因为递归层数有点多,同时直接对n除以2操作会让负数情况出现问题
因为快速幂是向下取整,负数直接除以2就变成了向上取整,比如-5/2应该是-3,但是代码里写-5/2结果是-2.
if (n & 1) return x*myPow(x, n/2)*myPow(x, n/2);
else return myPow(x, n/2)*myPow(x, n/2);
最终
class Solution {
public:
double myPow(double x, int n) {
if (n == 0) return 1;
if (n == 1) return x;
if (n == -1) return 1.0/x;
if (n & 1) return x*myPow(x*x, n>>1);
else return myPow(x*x, n>>1);
}
};