我们把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。
示例:
输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 10 个丑数。
说明:
1 是丑数。
n 不超过1690。
通过想象能够知道,丑数的序列是从1开始的,并后面的数字是前面数字通过x2、x3、x5得到的,所以说白了就是去获得一个这样的序列,但是要求序列有序且去重。
因为每个数字有3种生成方法,而且生成的数字是越来越大的,那么将三种生成方法分开计算(即使用不同指针指向序列中的数字),在生成序列的过程中对序列中每个数字计算其x2、x3、x5的值,取最小加入序列,并且生成之后判断目前其他2种方法有无重复的。
class Solution {
public:
int nthUglyNumber(int n) {
int ans[1700];
int pos1, pos2, pos3;
ans[0] = 1;
pos1 = pos2 = pos3 = 0;
for (int i = 1; i < n; ++i) {
int tmp = min(min(ans[pos1]*2, ans[pos2]*3), ans[pos3]*5);
if (tmp == ans[pos1]*2) pos1++;
if (tmp == ans[pos2]*3) pos2++;
if (tmp == ans[pos3]*5) pos3++;
ans[i] = tmp;
}
return ans[n-1];
}
};