线性回归-打印出拟合曲线的参数并绘制拟合曲线

1.将线性回归得到的两个参数打印出来,并且在图像中画出该拟合曲线。

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd


data=pd.read_csv( "finalData.csv", thousands=',')
data.plot(kind='scatter', x="GDP per capita", y='Life satisfaction', figsize=(5,3))


plt.axis([0, 60000, 0, 10])
X=np.linspace(0, 60000, 1000)
plt.plot(X, t0 + t1*X, "b")
plt.text(5000, 3.1, r"$\theta_0 = 4.85$", fontsize=14, color="b")
plt.text(5000, 2.2, r"$\theta_1 = 4.91 \times 10^{-5}$", fontsize=14, color="b")

plt.show()


from sklearn import linear_model
lin1 = linear_model.LinearRegression()
Xsample = np.c_[data["GDP per capita"]]
ysample = np.c_[data["Life satisfaction"]]
lin1.fit(Xsample, ysample)
# 输出 intercept_是截距, coef_是斜率系数
t0, t1 = lin1.intercept_[0], lin1.coef_[0][0]
print('打印t0',t0)
print('打印t1',t1)

2.结果展示

输出 intercept_是截距, coef_是斜率系数 ,这些也被成为回归系数。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值