概念
灰色系统是相对于黑色系统和白色系统而言的。
白色系统:系统的内部特征是完全已知的,即系统的信息是完全充分的。
黑色系统:一个系统的内部信息对外界来说是一无所知的,只能通过他与外界的联系来加以观测研究。
灰色系统:一部分信息是已知的,另一部分信息是未知的,系统内各因素之间具有不确定关系。其特点是‘少数据建模’,着重研究‘外延明确,内涵不明确’的对象。
灰色系统具有相对性与广泛性。指系统对于不同对象的灰度不一样。作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的。
灰色预测法:灰色预测法是一种对含有不确定因素的系统进行预测的方法 。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。它用等时间距离观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或者达到某一特征量的时间。
基本思想
基本思想是用原始数据组成原始序列(0),经累加生成法生成序列(1),它可以弱化原始数据的随机性,使其呈现出较为明显的特征规律。对生成变换后的序列(1) 建立微分方程型的模型即GM模型。GM(1,1) 模型表示1阶的、1个变量的微分方程模型。GM(1,1) 模型群中,新陈代谢模型是最理想的模型。这是因为任何一个灰色系统在发展过程中,随着时间的推移,将会不断地有一些随即扰动和驱动因素进入系统,使系统的发展相继地受其影响。用GM(1,1) 模型进行预测,精度较高的仅仅是原点数据(0)(n) 以后的1到2个数据,即预测时刻越远预测的意义越弱。而新陈代谢GM(1,1)模型的基本思想为越接近的数据,对未来的影响越大。也就是说,在不断补充新信息的同时,去掉意义不大的老信息,这样的建模序列更能动态地反映系统最新的特征,这实际上是一种动态预测模型。
优点
1、不需要大量样本。
2、样本不需要有规律性分布。
3、计算工作量小。
4、定量分析结果与定性分析结果不会不一致。
5、可用于短期、中长期预测。
6、灰色预测准确度高。
clear
x0=[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670];
pre_num=10;
n=length(x0);
disp('级比检验')
lambda=x0(1:end-1)./x0(2:end);
range=minmax(lambda);
x1=cumsum(x0);
z=0.5*(x1(2:end)+x1(1:end-1));
Y=x0(2:end)';
B=[-z(1:end)' ones(n-1,1)];
u=B\Y; %u=inv(B'*B)*B'*Y
a=u(1);
b=u(2);
x0_pre=[x0(1) ones(1,n+pre_num-1)];
for k=1:n-1+pre_num
x0_pre(k+1)=(x0(1)-b/a)*(exp(-a*k)-exp(-a*(k-1)));
end
err=x0 - x0_pre(1:n);
epsilon=abs(err)./x0(1:n).*100;
disp('预测值')
disp(x0_pre)
disp('相对误差')
disp(epsilon)
t1=1999:2008;
t2=1999:2018;
plot(t1,x0,'d',t2,x0_pre,'LineWidth',2) %原始数据与预测数据的比较
xlabel('年份')
ylabel('利润')
本文介绍了灰色系统理论的基础概念,包括白色系统、黑色系统及灰色系统的特点与区别,并重点阐述了灰色预测法的工作原理及其在实际应用中的优势。文中还通过具体案例展示了灰色预测模型的构建过程与预测效果。
3万+

被折叠的 条评论
为什么被折叠?



