647. 回文子串
题目描述
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
解题思路
这个问题可以通过动态规划来解决。我们定义一个二维布尔数组 dp,其中 dp[i][j] 表示字符串从索引 i 到 j 的子串是否是一个回文串。
递推公式的由来:
- 当 i == j 时,即单个字符,显然是一个回文串,所以 dp[i][j] = true,并且回文子串的数量加一。
- 当 j - i == 1 时,即两个字符,如果这两个字符相同,则它们组成的子串是一个回文串,所以 dp[i][j] = true,并且回文子串的数量加一。
- 当 j - i > 1 时,即多于两个字符,如果字符串在索引 i 和 j 的字符相同,并且 dp[i+1][j-1] 是一个回文串,则 dp[i][j] 也是一个回文串,并且回文子串的数量加一。
代码
class Solution {
public int countSubstrings(String s) {
boolean[][] dp = new boolean[s.length()][s.length()];
int count = 0;
for (int i = s.length() - 1; i >= 0; i--) {
for (int j = i; j < s.length(); j++) {
if (s.charAt(i) == s.charAt(j)) {
if (j - i <= 1) {
dp[i][j] = true;
count++;
} else if (dp[i + 1][j - 1]) {
dp[i][j] = true;
count++;
}
}
}
}
return count;
}
}
516. 最长回文子序列
题目描述
给定一个字符串 s
,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s
的最大长度为 1000。
示例 1:
- 输入: “bbbab”
- 输出: 4
- 一个可能的最长回文子序列为 “bbbb”。
示例 2: - 输入: “cbbd”
- 输出: 2
- 一个可能的最长回文子序列为 “bb”。
提示: - 1 <= s.length <= 1000
s
只包含小写英文字母
解题思路
这个问题同样可以通过动态规划来解决。我们定义一个二维数组 dp
,其中 dp[i][j]
表示字符串从索引 i
到 j
的最长回文子序列的长度。
递推公式的由来:
- 当
i == j
时,即单个字符,显然是一个回文子序列,所以dp[i][j] = 1
。 - 当
i < j
时,我们需要分两种情况讨论:- 如果
s.charAt(i) == s.charAt(j)
,那么dp[i][j] = dp[i + 1][j - 1] + 2
,因为我们可以将这两个相同的字符加入到从i+1
到j-1
的最长回文子序列的两端。 - 如果
s.charAt(i) != s.charAt(j)
,那么dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1])
,因为最长的回文子序列要么在i+1
到j
之间,要么在i
到j-1
之间。
- 如果
代码
class Solution {
public int longestPalindromeSubseq(String s) {
int[][] dp = new int[s.length()][s.length()];
for (int i = 0; i < s.length(); i++) {
dp[i][i] = 1;
}
for (int i = s.length() - 1; i >= 0; i--) {
for (int j = i + 1; j < s.length(); j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.length() - 1];
}
}