代码随想录第四十六天| 647. 回文子串 516.最长回文子序列 动态规划总结篇

647. 回文子串

题目描述

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

解题思路

这个问题可以通过动态规划来解决。我们定义一个二维布尔数组 dp,其中 dp[i][j] 表示字符串从索引 i 到 j 的子串是否是一个回文串。
递推公式的由来:

  • 当 i == j 时,即单个字符,显然是一个回文串,所以 dp[i][j] = true,并且回文子串的数量加一。
  • 当 j - i == 1 时,即两个字符,如果这两个字符相同,则它们组成的子串是一个回文串,所以 dp[i][j] = true,并且回文子串的数量加一。
  • 当 j - i > 1 时,即多于两个字符,如果字符串在索引 i 和 j 的字符相同,并且 dp[i+1][j-1] 是一个回文串,则 dp[i][j] 也是一个回文串,并且回文子串的数量加一。

代码

class Solution {
    public int countSubstrings(String s) {
        boolean[][] dp = new boolean[s.length()][s.length()];
        int count = 0;
        for (int i = s.length() - 1; i >= 0; i--) {
            for (int j = i; j < s.length(); j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    if (j - i <= 1) {
                        dp[i][j] = true;
                        count++;
                    } else if (dp[i + 1][j - 1]) {
                        dp[i][j] = true;
                        count++;
                    }
                }
            }
        }
        return count;
    }
}

516. 最长回文子序列

题目描述

给定一个字符串 s,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000。
示例 1:

  • 输入: “bbbab”
  • 输出: 4
  • 一个可能的最长回文子序列为 “bbbb”。
    示例 2:
  • 输入: “cbbd”
  • 输出: 2
  • 一个可能的最长回文子序列为 “bb”。
    提示:
  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

解题思路

这个问题同样可以通过动态规划来解决。我们定义一个二维数组 dp,其中 dp[i][j] 表示字符串从索引 ij 的最长回文子序列的长度。
递推公式的由来:

  • i == j 时,即单个字符,显然是一个回文子序列,所以 dp[i][j] = 1
  • i < j 时,我们需要分两种情况讨论:
    • 如果 s.charAt(i) == s.charAt(j),那么 dp[i][j] = dp[i + 1][j - 1] + 2,因为我们可以将这两个相同的字符加入到从 i+1j-1 的最长回文子序列的两端。
    • 如果 s.charAt(i) != s.charAt(j),那么 dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]),因为最长的回文子序列要么在 i+1j 之间,要么在 ij-1 之间。

代码

class Solution {
    public int longestPalindromeSubseq(String s) {
        int[][] dp = new int[s.length()][s.length()];
        for (int i = 0; i < s.length(); i++) {
            dp[i][i] = 1;
        }
        for (int i = s.length() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.length(); j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.length() - 1];
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值