Spark(部署在远程服务器) + ML + RandomForestClassification 实例(附本地上传文件到服务端HDFS)

本文介绍了在远程服务器上部署Spark时遇到的问题,包括找不到scala.Serializable类、NoSuchMethodError、文件找不到、HDFS权限问题等,并提供了相应的解决方法。此外,还分享了使用Pipeline实现RandomForestClassification的整体代码和运行结果,以及HDFS测试代码的参考链接。
摘要由CSDN通过智能技术生成

1. Spark部分问题及解决

1.1 问题1

Spark部署在远程服务器,只有IP和Port,解决:直接用就ip就可以.master("spark://master:7077")…,我还查来好久…,可以将配置文件单独搞一个类

package MLModel;

import org.apache.spark.sql.SparkSession;

public class UtilityForSparkSession {
   
    public static SparkSession mySession() {
   
        SparkSession spark = SparkSession.builder()
                .appName("RFTest971642")
                //.master("local[*]")
                .master("spark://master:7077")
                //.config("spark.sql.warehouse.dir", "E:/Exp/")
                .getOrCreate();
        return spark;
    }
}
1.2 问题二: 报错找不到scala.Serializable的类文件
Error:(19, 45) java: 无法访问scala.Serializable
  					找不到scala.Serializable的类文件

解决办法:原先在pom里加了很多依赖都没用…只能暴力将spark的安装目录下的JARs(Spark的所有jar包都在这里)文件夹复制到本地,再将整个目录添加到了project Structure->Modules->dependencies->添加文件夹…解决

1.3 问题三: 报错没有此方法NoSuchMethodError
Exception in thread "main" java.lang.NoSuchMethodError: scala.collection.mutable.Buffer$.empty()Lscala/collection/GenTraversable;

解决办法: scala版本不匹配,回退scala2.13.0版本为2.11.12,并同步pom中的依赖

1.4 问题四: 报错: 找不到文件(需要训练的文件为本地的.csv文件)

解决:百度了下,文件目录没有任何问题(不知道什么原因),所以直接将文件上传到HDFS上(完整的代码见最后)

 // 从本地往HDFS上传文件
    @Test
    public void copyFile() throws IOException {
   
        //本地文件路径
        String localSrc = "/home/train_data.csv";
        //在HDFS上新建的目录,新建方法见文章最后
        String hdfsDst = "/ML/";
        Path src = new Path(localSrc);
        Path dst = new Path(hdfsDst);
        //本地文件不存在
        if (!(new File(localSrc)).exists()) {
   
            System.out.println("Error: local dir \t" + localSrc
                    + "\t not exists.");
            return;
        }
        //hdfs路径不存在
        if (!hdfs.exists(dst)) {
   
            System.out.println("Error: dest dir \t" + dst.toUri()
                    + "\t not exists.");
            return;
        }
        String dstPath = dst.toUri() + "/" + src.getName();
        //System.out.println(dstPath);//   "/test1/3931.jpg"
        //判断上传的文件 hdfs的目录下是否存在
        if (hdfs.exists(new Path(dstPath))) {
   
            System.out.println("Warn: dest file \t" + dstPath
                    + "\t already exists.");
        }else{
   
            //本地文件上传hdfs
            hdfs.copyFromLocalFile(src, dst);
            // list all the files in the current direction
            //遍历文件
            FileStatus files[] = hdfs.listStatus(dst);
            System.out.println("Upload to \t" + conf.get("fs.default.name")
                    + hdfsDst);
            for (FileStatus file : files) {
   
                System.out.println(file.getPath());
            }
        }
    }
1.5 问题五:当你要上传文件到HDFS时,报错hadoop.security.AccessControlException
org.apache.hadoop.security.AccessControlException: Permission denied: user=master, access=WRITE, inode="/":hadoop:supergroup:drwxr-xr-x

解决办法:即使用hdfs命令创建文件夹,并给该文件夹上权限

[hadoop@master bin]$ hdfs dfs -mkdir /ML
[hadoop@master bin]$ hdfs dfs -chmod 777 /ML
1.6 问题六:保存模型时报错
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 44.0 failed 4 times, most recent failure: Lost task 0.3 in stage 44.0 (TID 862, 10.108.22.222, executor 2): java.io.IOException: Mkdirs failed to create 

解决办法:直接将模型保存到HDFS上完事

//保存模型
model.write().overwrite().save("hdfs://master:9000/ML/RandomForestTestModel");
//保存管道
pipeline.write().overwrite().save("hdfs://master:9000/ML/PipLineRandomForestTestModel");
//载入模型
//PipelineModel rfModelLoad = PipelineModel.load("hdfs://master:9000/ML/RandomForestTestModel");
//同样的操作
//Dataset<Row> predictions = rfModelLoad.transform(test);
//展示前5条结果
// predictions.select("prediction", "Label","indexedFeatures","rawPrediction", "probability").show(5);

2. 整体使用Pipeline的RF代码

package MLModel;

import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.RandomForestClassificationModel;
import org.apache.spark.ml.classification.RandomForestClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.feature.VectorIndexer;
import org.apache.spark.ml.feature.VectorIndexerModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值