HDU 3803 求线段交点

 

搞了半天是long long的问题,用__int64就A了,貌似在杭电用long long都有问题的

 

/* 

 * File:   main.cpp

 * Author: swordholy

 *

 * Created on 2011年3月30日, 下午6:50

 */

#include <cstdlib>

#include <deque>

#include <stdio.h>

#include <memory.h>

#include <iostream>

#include <algorithm>

using namespace std;

struct pt

{

    __int64 x,y;

    __int64 tt;

    pt(){}

    pt(__int64 xx,__int64 yy)

    {

        x=xx;

        y=yy;

    }

 

};

__int64 llllabs(__int64 x)

{

    if (x<0) return -x;

    else return x;

}

__int64 Cross(pt a,pt b)

{

    return a.x*b.y-a.y*b.x;

}

__int64  Cross(pt a,pt b,pt c)

{

    return Cross(pt(a.x-c.x,a.y-c.y),pt(b.x-c.x,b.y-c.y));

}

pt intersection(pt u1,pt u2,pt v1,pt v2)

{

    pt ret=u1;

    __int64 t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x));

    __int64 tt=((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));

    ret.x=ret.x*tt+(u2.x-u1.x)*t;

    ret.y=ret.y*tt+(u2.y-u1.y)*t;

    ret.tt=tt;

    return ret;

}

 bool same_side(pt p1,pt p2,pt l1,pt l2)//p1或p2落在直线上就算异面

 {

     __int64 c1=Cross(l1,p1,l2),c2=Cross(l1,p2,l2);

     if (c1>0) c1=1;

     if (c1<0) c1=-1;

     if (c2>0) c2=1;

     if (c2<0) c2=-1;

   return (c1*c2>0);

 }

 __int64 gcd(__int64 x,__int64 y)

 {

     if (y==0)return x;

     else return gcd(y,x%y);

 }

pt u1,u2,v1,v2;

int main(int argc, char** argv) 

{

    int tcase,x,y,i,j;

    int flag;//-1:uncalc 0:不相交  1:一个交点 2:INF

    pt res;

    freopen("gxx's_Problem.in","r",stdin);

    freopen("gxx's_Problem.SwordHoly.out","w",stdout);

    scanf("%d",&tcase);

    while(tcase--)

    {

        scanf("%I64d%I64d%I64d%I64d",&u1.x,&u1.y,&u2.x,&u2.y);

        scanf("%I64d%I64d%I64d%I64d",&v1.x,&v1.y,&v2.x,&v2.y);

        u1.tt=1;u2.tt=1;v1.tt=1;v2.tt=1;

        if (u1.x>u2.x) {pt t=u1;u1=u2;u2=t;}

        if (v1.x>v2.x) {pt t=v1;v1=v2;v2=t;}

        flag=-1;

        //u is a point

        if ( (u1.x==u2.x)&&(u1.y==u2.y) )

        {

            if ((Cross(u1,v1,v2)==0)&&(u1.x>=v1.x)&&(u1.x<=v2.x)&&(u1.y>=min(v1.y,v2.y))&&(u1.y<=max(v2.y,v1.y)) )//第一次这里漏了,没判断y方向的

            {

                flag=1;

                res=u1;

            }

            else

                flag=0;

        }

        //v is a point

          if ( (v1.x==v2.x)&&(v1.y==v2.y) )

        {

            if ((Cross(v1,u1,u2)==0)&&(v1.x>=u1.x)&&(v1.x<=u2.x)&&(v1.y>=min(u1.y,u2.y))&&(v1.y<=max(u2.y,u1.y)))

            {

                flag=1;

                res=v1;

            }

            else

                flag=0;

        }

        if (flag==-1)

 

       if ((Cross(u1,v1,v2)==0)&&(Cross(u2,v1,v2)==0) )//在同一直线上

        {

            if (u1.x!=u2.x)//不垂直

            {

                if (v1.x==u2.x)

                {

                    flag=1;

                    res=u2;

                }

                else if (v1.x>u2.x)

                {

                    flag=0;

                }

                else

                {

                    if (v2.x==u1.x)

                    {

                        flag=1;

                        res=v2;

                    }

                    else if(v2.x<u1.x)

                    {

                        flag=0;

                    }

                    else

                    {

                        flag=2;

                    }

                }

            }

            else

            {

                     if (u1.y>u2.y) {pt t=u1;u1=u2;u2=t;}

                     if (v1.y>v2.y) {pt t=v1;v1=v2;v2=t;}

                if (v1.y==u2.y)

                {

                    flag=1;

                    res=u2;

                }

                else if (v1.y>u2.y)

                {

                    flag=0;

                }

                else

                {

                    if (v2.y==u1.y)

                    {

                        flag=1;

                        res=v2;

                    }

                    else if(v2.y<u1.y)

                    {

                        flag=0;

                    }

                    else

                    {

                        flag=2;

                    }

                }

            }

        }

        else

        {

             if ( (!same_side(u1,u2,v1,v2))&&(!same_side(v1,v2,u1,u2)) )

            {

                flag=1;

                res=intersection(u1,u2,v1,v2);

            }

            else flag=0;

        }

        if (flag==2)

            printf("INF/n");

        else if(flag==0)

            printf("0/n");

        else

        if (flag==1)

        {

            printf("1/n");

                 if (res.tt<0)

                {

                    res.x=-res.x;

                    res.y=-res.y;

                    res.tt=-res.tt;

                }

                 __int64 tx,ty;

                __int64 k=gcd(llllabs(res.x),res.tt);

                res.x=res.x/k;

                tx=res.tt/k;

                 k=gcd(llllabs(res.y),res.tt);

                 res.y=res.y/k;

                 ty=res.tt/k;

                 if (res.x!=0)

                 {

                   if (tx!=1)

                     printf("%I64d/%I64d ",res.x,tx);

                   else printf("%I64d ",res.x);

                 }

                 else printf("0 ");

                 if (res.y!=0)

                 {

                   if (ty!=1)

                     printf("%I64d/%I64d/n",res.y,ty);

                   else printf("%I64d/n",res.y);

                 }

                 else printf("0/n");

        }

    }

    return 0;

}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要我们将这些木棒割成一些给定长度,且要每种长度的木棒的数量都是一样的,最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SwordHoly

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值