求最长公共子序列和最长公共子串

(1)求解最长公共子串

输入描述:输入为两行字符串(可能包含空格),长度均小于等于50。

输出描述:  输出为一个整数,表示最长公共连续子串的长度。
输入例子:
abcde
abgde
输出例子:
2

题解:

(1)假设两个字符串str1和str2的长度分别为m和n,构建一个矩阵(即二维数组)M[m][n],初始值都设为0,如果字符串str1中

第i个字符str[i-1](下标从零开始)与字符串str2中第j个字符串str[j-1]相等,则将matric[i][j]设为1。最后统计矩阵M中对角线最大的连续1的个数,

即为两字符串最长公共子串。注:如不好理解,可以画图辅助。

/*例如:str1: abcde    str2: abgde  
                 matrix = [ 1  0  0  0  0 
 
                  0  1  0  0  0
 
                  0  0  0  0  0
 
                  0  0  0  1  0
 
                  0  0  0  0  1 ]
 
    斜线上连续的1的最大个数为2,所以最长公共连续子串长度为2*/ 是每条对角线,而不只是主对角线。
参考代码如下:
#include <iostream>
#include <string>
using namespace std;
int main()
  {
      char str1[51],str2[51];
      int matric[51][51]={0};       
      int  MaxLen=0;
      gets(str1);   //cin.getline(str1,51);
      gets(str2);
      for(int i=0;str1[i]!='\0';i++)      //如果两个位置的元素相等,矩阵值为1
        {
           for(int j=0;str2[j]!='\0';j++)
              {
                 if(str1[i]==str2[j])
                     matric[i][j]=1;
              }
        }      
      for(int i=0;str1[i]!='\0';i++)      //依次找对角线最大连续1的个数
        {
           for(int j=0;str2[j]!='\0';j++)
              {
                 int m=i;
                 int n=j;
                 int len=0;
                 while(matric[m++][n++]==1)
                     len++;
                 if(MaxLen<len)
                     MaxLen=len;
              }
       }
     cout<<MaxLen<<endl;
  }

(2)求解最长公共子序列

一,问题描述

给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence)。比如字符串1:BDCABA;字符串2:ABCBDAB

则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA

这是一个动态规划的题目。对于可用动态规划求解的问题,一般有两个特征:①最优子结构;②重叠子问题

①最优子结构

设 X=(x1,x2,.....xn) 和 Y={y1,y2,.....ym} 是两个序列,将 X 和 Y 的最长公共子序列记为LCS(X,Y)

找出LCS(X,Y)就是一个最优化问题。因为,我们需要找到X 和 Y中最长的那个公共子序列。而要找X 和 Y的LCS,首先考虑X的最后一个元素和Y的最后一个元素。

1)如果 xn=ym,即X的最后一个元素与Y的最后一个元素相同,这说明该元素一定位于公共子序列中。因此,现在只需要找:LCS(Xn-1,Ym-1)

LCS(Xn-1,Ym-1)就是原问题的一个子问题。为什么叫子问题?因为它的规模比原问题小。(小一个元素也是小嘛....)

为什么是最优的子问题?因为我们要找的是Xn-1 和 Ym-1 的最长公共子序列啊。。。最长的!!!换句话说,就是最优的那个。(这里的最优就是最长的意思)

2)如果xn != ym,这下要麻烦一点,因为它产生了两个子问题:LCS(Xn-1,Ym) 和 LCS(Xn,Ym-1)

因为序列X 和 序列Y 的最后一个元素不相等嘛,那说明最后一个元素不可能是最长公共子序列中的元素嘛。(都不相等了,怎么公共嘛)。

LCS(Xn-1,Ym)表示:最长公共序列可以在(x1,x2,....x(n-1)) 和 (y1,y2,...yn)中找。

LCS(Xn,Ym-1)表示:最长公共序列可以在(x1,x2,....xn) 和 (y1,y2,...y(n-1))中找。

求解上面两个子问题,得到的公共子序列谁最长,那谁就是 LCS(X,Y)。用数学表示就是:

LCS=max{LCS(Xn-1,Ym),LCS(Xn,Ym-1)}

由于条件 1)  和  2)  考虑到了所有可能的情况。因此,我们成功地把原问题 转化 成了 三个规模更小的子问题。

②重叠子问题

重叠子问题是啥?就是说原问题 转化 成子问题后,  子问题中有相同的问题。咦?我怎么没有发现上面的三个子问题中有相同的啊????

OK,来看看,原问题是:LCS(X,Y)。子问题有 ❶LCS(Xn-1,Ym-1)    ❷LCS(Xn-1,Ym)    ❸LCS(Xn,Ym-1)

初一看,这三个子问题是不重叠的。可本质上它们是重叠的,因为它们只重叠了一大部分。举例:

第二个子问题:LCS(Xn-1,Ym) 就包含了:问题❶LCS(Xn-1,Ym-1),为什么?

因为,当Xn-1 和 Ym 的最后一个元素不相同时,我们又需要将LCS(Xn-1,Ym)进行分解:分解成:LCS(Xn-1,Ym-1) 和 LCS(Xn-2,Ym)

也就是说:在子问题的继续分解中,有些问题是重叠的。

 

由于像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。因为采用递归,它重复地求解了子问题啊。而且注意哦,所有子问题加起来的个数 可是指数级的哦。。。。

这篇文章中就演示了一个递归求解重叠子问题的示例。

那么问题来了,你说用递归求解,有指数级个子问题,故时间复杂度是指数级。这指数级个子问题,难道用了动态规划,就变成多项式时间了??

呵呵哒。。。。

关键是采用动态规划时,并不需要去一 一 计算那些重叠了的子问题。或者说:用了动态规划之后,有些子问题 是通过 “查表“ 直接得到的,而不是重新又计算一遍得到的。废话少说:举个例子吧!比如求Fib数列。关于Fib数列,可参考:

求fib(5),分解成了两个子问题:fib(4) 和 fib(3),求解fib(4) 和 fib(3)时,又分解了一系列的小问题....

从图中可以看出:根的左右子树:fib(4) 和 fib(3)下,是有很多重叠的!!!比如,对于 fib(2),它就一共出现了三次。如果用递归来求解,fib(2)就会被计算三次,而用DP(Dynamic Programming)动态规划,则fib(2)只会计算一次,其他两次则是通过”查表“直接求得。而且,更关键的是:查找求得该问题的解之后,就不需要再继续去分解该问题了。而对于递归,是不断地将问题分解,直到分解为 基准问题(fib(1) 或者 fib(0))

 

说了这么多,还是要写下最长公共子序列的递归式才完整。借用网友的一张图吧:)

 

c[i,j]表示:(x1,x2....xi) 和 (y1,y2...yj) 的最长公共子序列的长度。(是长度哦,就是一个整数嘛)。公式的具体解释可参考《算法导论》动态规划章节

C++实现求最长公共子序列
#include<iostream>
#include<string.h>
#include<algorithm>
#include<cmath>
#include<map>
#include<string>
#include<stdio.h>
#include<vector>
#include<string>
#include<math.h>
#include<time.h>
#include<stack>
using namespace std;
#define LL long long int
#define mod 1000000007
#define MAX(x, y) (x) > (y) ? (x) : (y)
#define mem0(a) memset(a,0,sizeof(a))
using namespace std;

int dp[5005][5005];

int main() {
	string s1, s2;
	while (cin >> s1 >> s2) {
		mem0(dp);
		int len1 = s1.length();
		int len2 = s2.length();
		for (int i = 0; i <= len1; i++) {
			for (int j = 0; j <= len2; j++) {
				if (i == 0 || j == 0)dp[i][j] = 0;
				else if (s1[i] == s2[j])dp[i][j] = dp[i - 1][j - 1] + 1;
				else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
			}
		}
		cout << dp[len1][len2] << endl;
	}
	return 0;
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值