nyoj 63 小猴子下落(二叉树)


               1               
        2                    3      
  4       5       6       7  
    10   11    12     13   14   15 

  

根据右图测试数据可知,一共有n行(3,4,5),x个猴子中每2^n出现一循环,理由就是它是满二叉树。

根据左图四层我们列出数据看看:

第1只猴子 1 2 4 8
第2只猴子 1 3 6 12
第3只猴子 1 2 5 10
第4只猴子 1 3 7 14
第5只猴子 1 2 4 9
第6只猴子 1 3 6 13
第7只猴子 1 2 5 11
第8只猴子 1 3 7 15

 

请读者看看四层二叉树(上左图)和上表中对比不难发现,进入第n个结点的次数i为奇数(即前面已有n-1过猴子访问过该结点),那么遍历其左子树根;

若为偶数,则遍历其右子树根。

因此,对照上表,得出规律:i为奇数,k=k*2;i=(i+1)/2;//第i个进入左子树

             i为偶数,k=k*2+1;i=i/2; //第i个进入右子树

例如

第1个猴子:则对于第一个结点来说,i=1为奇数,那么下一个要走的结点k=1*2=2;然后i=(1+1)/2=1(第一个进入左子树),继续判断其左子树i的奇偶性……

第3个猴子:则对于第一个结点来说,i=3为奇数,那么下一个要走的结点k=1*2=2;然后i=(3+1)/2=2(第二个进入左子树)……

第5个猴子:则对于第一个结点来说,i=5为奇数,那么下一个要走的结点k=1*2=2;然后i=(5+1)/2=3(第三个进入左子树)……

Code:

#include<iostream>
  using namespace std;

  int main()
  {
      int d,i,k;
      while(cin>>d>>i && (d+i) !=0)
      {
         k=1;
         for (int j=0;j<d-1;j++)
             if(i%2) {k=k*2;i=(i+1)/2;}
             else {k=k*2+1;i /=2;}
         cout<<k<<endl;

     }
 }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值