1 | ||||||||||||||
2 | 3 | |||||||||||||
4 | 5 | 6 | 7 | |||||||||||
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
根据右图测试数据可知,一共有n行(3,4,5),x个猴子中每2^n出现一循环,理由就是它是满二叉树。
根据左图四层我们列出数据看看:
第1只猴子 | 1 | 2 | 4 | 8 |
第2只猴子 | 1 | 3 | 6 | 12 |
第3只猴子 | 1 | 2 | 5 | 10 |
第4只猴子 | 1 | 3 | 7 | 14 |
第5只猴子 | 1 | 2 | 4 | 9 |
第6只猴子 | 1 | 3 | 6 | 13 |
第7只猴子 | 1 | 2 | 5 | 11 |
第8只猴子 | 1 | 3 | 7 | 15 |
请读者看看四层二叉树(上左图)和上表中对比不难发现,进入第n个结点的次数i为奇数(即前面已有n-1过猴子访问过该结点),那么遍历其左子树根;
若为偶数,则遍历其右子树根。
因此,对照上表,得出规律:i为奇数,k=k*2;i=(i+1)/2;//第i个进入左子树
i为偶数,k=k*2+1;i=i/2; //第i个进入右子树
例如
第1个猴子:则对于第一个结点来说,i=1为奇数,那么下一个要走的结点k=1*2=2;然后i=(1+1)/2=1(第一个进入左子树),继续判断其左子树i的奇偶性……
第3个猴子:则对于第一个结点来说,i=3为奇数,那么下一个要走的结点k=1*2=2;然后i=(3+1)/2=2(第二个进入左子树)……
第5个猴子:则对于第一个结点来说,i=5为奇数,那么下一个要走的结点k=1*2=2;然后i=(5+1)/2=3(第三个进入左子树)……
Code:#include<iostream>
using namespace std;
int main()
{
int d,i,k;
while(cin>>d>>i && (d+i) !=0)
{
k=1;
for (int j=0;j<d-1;j++)
if(i%2) {k=k*2;i=(i+1)/2;}
else {k=k*2+1;i /=2;}
cout<<k<<endl;
}
}