动态规划算法

1. 用递归的方法求兔子数列

  (1)优点:程序代码简洁明了

  (2)缺点:当数据规模较大时,运行时间很长,原因是有重复计算

  (3)优化:用动态规划算法进行优化(记忆化搜索)

 

#include <bits/stdc++.h>
using namespace std;
int f(int n);
int main()
{
    cout<<f(60);
    return 0;
}

int f(int n)
{
    if(n<=2)
    {
        return 1;
    }
    else
    {
        return f(n-1)+f(n-2);
    }
}

2. 记忆化搜索求兔子数列

注:额外用空间换取时间 

#include <bits/stdc++.h>
using namespace std;
int a[1000];
int f(int n);
int main()
{
    cout<<f(60);
    return 0;
}

int f(int n)
{
    if(a[n]==0)//没有算过才进行计算
    {
        if(n<=2)
        {
            a[n]=1;
        }
        else
        {
            a[n]=f(n-1)+f(n-2);
        }
    }
    return a[n];
}

3. 动态规划

(1)动态规划是一步一总结,步步为营

(2)动态规划的关键是递推公式(非常难推出,即状态转移方程)

(3)动态规划的代码很短,但是非常难理解,很抽象

(4)常用名词:阶段,阶段变量,状态,状态变量

#include <bits/stdc++.h>
using namespace std;
long long f[1000];
int main()
{
    int n=60;
    f[1]=f[2]=1;
    for(int i=3; i<=n; i++)
    {
        f[i]=f[i-1]+f[i-2];//线性推导
    }
    cout<<f[n];
    return 0;
}

 动态规划的主要问题类型:

(1)背包问题:01背包(每种物品只有一个),完全背包(每种物品有无数个),多重背包(每种物品有若干个),二维背包(限制因素有2个,比如体积和重量)

注:背包问题的三要素:耗费,收益,限制

(2)最长不降子序列问题

(3)最长公共子序列问题

(4)区间动态规划问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值