排序 : 3 选择排序

3 选择排序

a 直接选择排序

//选择排序

  for(int i=0;i<ints.length;i++){//需要选择的次数,每次选一个最小的放在相应位置

   int min=i;

   for(int j=i+1;j<ints.length;j++){//选出最小元素的位置

    if(ints[j]<ints[min]){

     min=j;

    }

   }

   int temp;//把最小的元素交换到相应位置

   temp=ints;

   ints=ints[min];

   ints[min]=temp;

  }

此算法就是每次找出一个最小的放在相应位置,再在剩下的数中选个最小的出来。。。比较次数还是1+2+3+...+n-1这个等差数列,最好情况下不需要交换元素位置。最坏情况下需要交换n-1次,此时的时间复杂度为O(n的平方).明显是不稳定的(2,2,1)。


b 堆排序---不稳定

1.堆排序定义
     n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
     (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤  )

     若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

2、大根堆和小根堆
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
  注意:
     ①堆中任一子树亦是堆。
     ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。

3、堆排序特点
     堆排序(HeapSort)是一树形选择排序。
     堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。

4、堆排序与直接插入排序的区别
     直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次 比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执 行了这些比较操作。
     堆排序可通过树形结构保存部分比较结果,可减少比较次数。

5、

(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区 间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n- 2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
    ……
直到无序区只有一个元素为止。

(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
  注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值