- 博客(8)
- 收藏
- 关注
原创 鲁班猫(RK3566)驱动DS18B20:解决用户层时序抖动,手写内核模块
本文详细介绍了在嵌入式Linux系统(以鲁班猫RK3566为例)上通过内核驱动稳定读取DS18B20温度传感器的完整方案。针对用户层GPIO操作时序不稳定的问题,作者提出编写内核模块的解决方案,通过local_irq_save关闭中断保证微秒级时序精度。文章包含硬件连接指南、GPIO编号计算方法、编译环境配置技巧、驱动代码实现(含Sysfs接口)以及开机自启配置等完整流程。该方案避免了用户层操作的时序问题,实现了稳定可靠的温度读取,最后还提供了应用层调用的C语言示例代码。
2025-12-08 21:45:26
720
原创 STM32F407VET6驱动ST7735 TFT液晶屏教程(基于STM32CubeIDE)
STM32F407VET6是STMicroelectronics公司推出的一款高性能ARM Cortex-M4内核的32位微控制器,具有以下主要特性:168MHz主频,210DMIPS的处理能力512KB Flash存储器和192KB SRAM丰富的外设接口:SPI、I2C、USART等3个12位ADC,2个12位DAC17个定时器。
2025-11-04 15:24:19
729
原创 初学3dgs并训练数据集
【Ubuntu20.04系统下3D Gaussian Splatting环境配置指南】 摘要:本文详细介绍了在Ubuntu20.04系统下配置3D Gaussian Splatting所需的环境。建议采用双系统安装方式,配置CUDA11.8、Anaconda3和colmap3.8等必备组件。具体步骤包括:1)安装Anaconda3;2)配置CUDA11.8;3)安装colmap3.8;4)创建Python3.8虚拟环境并安装Pytorch等依赖库。最后通过Git获取3DGS源码,使用ffmpeg处理视频数据
2025-10-28 23:04:51
1629
原创 神经网络学习(四)时间卷积神经网络
TCN(时序卷积网络)是一种创新的时间序列分析模型,通过因果卷积和扩张卷积克服了传统RNN的梯度消失、训练效率低等缺陷。其核心特点是:1)严格的因果性保证,通过左填充避免使用未来信息;2)指数级扩张的感受野,利用多层扩张卷积高效捕捉长期依赖;3)残差连接确保深层网络稳定性。TCN在语音合成、金融预测、无人机控制等领域展现卓越性能,兼具CNN的并行计算优势和RNN的时序处理能力。虽然存在计算成本较高、超参数敏感等局限,但其优异的实时性和可解释性使其成为时序建模的重要工具。通过堆叠因果扩张卷积层,TCN能有效整
2025-10-28 22:32:02
707
原创 神经网络学习(三)卷积神经网络
卷积神经网络(CNN)是一种专门处理网格数据的深度学习模型,通过卷积层、池化层和全连接层的组合实现特征提取和分类。卷积层利用滑动窗口提取局部特征,池化层降维保留关键信息,全连接层整合特征进行最终预测。文章通过一个4×4输入的二分类实例,详细演示了CNN前向传播、损失计算和反向传播的数学过程,并展示了两轮训练后模型准确率从63.9%提升到90.76%的效果。该案例揭示了CNN通过层次结构自动学习特征的能力,以及参数更新对模型性能的显著改善。
2025-10-24 22:14:18
1773
原创 神经网络学习(二)循环神经网络
本文详细介绍了循环神经网络(RNN)的基本原理及其与传统神经网络的差异。RNN通过隐藏状态记忆序列信息,适用于时间序列等动态数据处理。通过一个交替序列[0,1,0,1]的预测实例,具体演示了RNN的前向传播、损失计算和反向传播过程,展示了权重更新对预测结果的改进效果。文章还指出简单RNN的局限性,建议使用LSTM或GRU等进阶模型解决梯度消失问题。
2025-10-22 16:56:56
1813
原创 基于stm32f103c8t6对peacefair电压电流检测模块使用并显示在oled上
摘要:本文介绍了基于STM32F103C8T6的交流电压电流监测系统设计与实现。系统采用Peacefair交流电压电流表模块和0.96英寸OLED显示屏,通过软件IIC(PA5/PA6)和USART1(PA9/PA10)实现通信。详细说明了IIC初始化、OLED显示配置(包含多页切换)、USART1初始化及Modbus协议实现过程,并提供了四个按键(PB0-PB3)分别控制显示切换、数据读取启停和清零功能。系统可实时显示电压、电流、功率因数等参数,支持数据清零操作,完整工程代码已提供网盘下载。
2025-10-21 14:35:09
404
原创 神经网络学习(一)前馈神经网络
本文介绍了前馈神经网络的基本原理。神经网络通过线性变换(Wx+b)与非线性激活函数(如ReLU、Sigmoid)的组合来逼近复杂关系。输入层接收数据,隐藏层进行特征变换,输出层根据任务类型设计。损失函数(如MSE、MAE)衡量预测误差,梯度下降算法通过计算参数梯度并反向传播来优化网络权重。整个过程体现了"线性组合+非线性激活"的通用逼近能力,通过迭代训练使预测值逐步接近真实值。
2025-10-21 13:56:29
609
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅