机器学习自学笔记 3

支持向量机2

低维到高维的映射

在支持向量机中,低维情况下会不可避免地遇到训练样本线性不可分的情况,为了解决这个问题,人们往往会将低维转换到高维上,这样在低维上还是线性不可分的训练样本就变得线性可分了。有这样一个定理:在一个M维空间上随机取N个训练样本随机对每个样本赋予标签,假设这些训练样本线性可分的概率为P,当M趋于无穷大时P=1.从直观上来理解,当特征空间的维度M增加时,待估计参数的维度也会增加,整个算法的自由度便增加,这样一来,在低维上线性不可分的训练样本在高维上就变的线性可分了。

举一个简单的例子:
在这里插入图片描述
在这样一个简单的异或问题中,训练样本在二维中显然是线性不可分的,我们不能直接找到一条直线将样本给分开来,即:
在这里插入图片描述
而倘若我们构造一个二维到五维的映射:
在这里插入图片描述
由此,x = [a,b]的转置就可以转换如下图:
在这里插入图片描述
此时,设参数w,b:
在这里插入图片描述
这样一来,这个在二维上还线性不可分的训练样本便在五维上线性可分了:
在这里插入图片描述

核函数

通过从低维到高维的映射,我们可以让线性不可分变得线性可分,那么该如何去研究这个映射关系呢?这里便有了核函数的定义,我们会通过核函数K去具体研究映射的形式。

支持向量机的创始人提出:不需要知道映射的具体形式,相反,只要得到核函数如下:
在这里插入图片描述
那么便可以通过一定的手段去得到预测样本的类别信息,从而完成对训练样本的预测。核函数K是一个常数。举两个例子:
核函数以及低维到高维的映射之间的相互关系:从映射去推测出核函数K
在这里插入图片描述
已知核函数求映射:
在这里插入图片描述
在知道了核函数之后,通过X便可以求出映射:

在这里插入图片描述
核函数K和映射是一一对应的。需要注意的是,核函数K一定要满足以下条件才能够分解为两个映射内积的形式:
在这里插入图片描述
也就是说,必须满足以下两个条件:核函数K在任意两个输入变量的情况下不受输入变量的顺序影响,即交换位置不会改变核函数的值;对于任何一组实数 Ci、Cj(i=1到N),以及任何 N,将这些实数与函数 K 对应的输出相乘并求和的结果总是非负的,换句话说,无论如何选择和组合这些系数 Ci、Cj,它们与 K 函数的乘积之和都不会小于零。

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值