tc-srm704-div1-500 解题报告

题意:
给定n,K。有q组询问,第i组询问是求nj=1xj(0xj<K)=vi的解的数量。
1n50,1K109,1q10000

我本来是这样想的:
显然最终答案只与gcd(v,K)有关。
那么令f(i,j)为前i个数乘积是与n的gcd是j的某个数的方案数,那么f(i,j)=d|jf(i1,d)dϕ(d)
首先f(i1,d)其乘积可能的取值有ϕ(d)个,设其为x,再乘上第i个数为y,乘积为z,即xymodK=z,xdy=zd(modKd),y=zdxd1(modKd),即对于任意z,y都有KKd=d种取值。
这样时间复杂度就是O(n(K)2+qlogK),虽然说约数个数的估计一般是O(n),但这是一个非常松的上界,109以内约数个数最多有1000左右,所以并不会有问题。

但是我们可以考虑中国剩余定理,若K=pa11pa22...,那么模K意义下的答案就是模pa11,pa22...意义下的答案的乘积,所以我们可以对每个质因子分别dp再乘起来,这样的话ϕ也变得非常好算了。
这样时间复杂度就是O(nlog2K+qlogK)

总结:
遇到模一个合数的时候,一定要想一想能不能用中国剩余定理!

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/TA201314/article/details/53975943
文章标签: 数论 dp
个人分类: 数论 DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭