快速排序法

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两个部分,其中一部分的所有树都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程中可以递归进行,以此达到整个数据变成有序序列

排序原理

  • 1.首先设定一个分界值,通过该分界值将数据组分成左右两个部分

  • 2.将大于或等于分界值的数据放到数据右边,小于分界值的数据放到数据的左边,此时左边部分中各元素都小于或等于分界值,而右边部分中个元素都大于或等于分界值

  • 3.然会,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样再左边放置较小的值,右边放置较大的值,右侧的数组数据也可以做类似处理

  • 4.重复上述过程,可以看出,这是一个递归定义,通过递归左侧部分排好序后。再将排好序右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了

在这里插入图片描述
在这里插入图片描述
切分原理

把一个数据切分成两个子数组的基本思想:

1.找一个基准值,用两个指针分别指向数组的头部和尾部

2.先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置

3.再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置

4.交换当前左边指针位置和右边指针位置的元素

5.重复2,3,4步骤,直到左边执政的值大于右边指针的值停止
快速排序的时间复杂度

快速排序的一个切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n)但整个快速排序的时间复杂度和切分的次数相关

最优情况:每次切分的基准数字刚好将当前序列等分

最坏情况:每一个切分选择的基准数字时当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以最坏情况下,快速排序的时间复杂度为O(n^2)
在这里插入图片描述
如果我把数组的切分看作是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快速排序的时间复杂度为O(nlong)

最坏情况:每次切分选择的基准数字时当前序列中最大的数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2)
在这里插入图片描述

//比较v元素是否小于w元素
    private static boolean less(Comparable v,Comparable w){
        return v.compareTo(w)<0;
    }
    //数组元素i和j交换位置
    private static void exch(Comparable[] a,int i,int j){
        Comparable t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
    //对数据a中的数据进行排序
    public static void sort(Comparable[] a){
        int lo=0;
        int hi=a.length-1;
        sort(a,lo,hi);
    }
    //对数据lo中到hi的元素进行排序
    private static void sort(Comparable[] a,int lo,int hi){
        //安全性校验
        if(hi<=lo){
            return;
        }
        //需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组)
        int partition=partition(a,lo,hi);//返回的是分组的分界值所在的索引,分界值位置变换后的索引
        //让左子组有序
        sort(a,lo,partition-1);
        //让右子组有序
        sort(a,partition+1,hi);
    }
    //对数据中,从0到mid为一组,从mid+1到hi为一组,对这两组进行归并排序
    public static int partition(Comparable[] a,int lo,int hi){
         //确定分解值
        Comparable key=a[lo];
        //定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置
        int left=lo;
        int right=hi+1;
        //切分
        while (true){
            //先从右往左扫描,移动right指针,找到一个比分界值小的元素停止
            while (less(key,a[--right])){
                if(right==lo){
                    break;
                }
            }
            //先从左往左扫描,移动left指针,找到一个比分界值大的元素停止
            while (less(a[++left],key)){
                if(left==hi){
                    break;
                }
            }
            //判断left>=right,如果是则证明元素扫描完毕,结束循环,如果不是,则交换元素即可
            if(left>=right){
                break;
            }else{
                exch(a,left,right);
            }
        }
        //交叉分界道
        exch(a,lo,right);
        return right;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值