快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两个部分,其中一部分的所有树都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程中可以递归进行,以此达到整个数据变成有序序列
排序原理
-
1.首先设定一个分界值,通过该分界值将数据组分成左右两个部分
-
2.将大于或等于分界值的数据放到数据右边,小于分界值的数据放到数据的左边,此时左边部分中各元素都小于或等于分界值,而右边部分中个元素都大于或等于分界值
-
3.然会,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样再左边放置较小的值,右边放置较大的值,右侧的数组数据也可以做类似处理
-
4.重复上述过程,可以看出,这是一个递归定义,通过递归左侧部分排好序后。再将排好序右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了
切分原理
把一个数据切分成两个子数组的基本思想:
1.找一个基准值,用两个指针分别指向数组的头部和尾部
2.先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置
3.再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置
4.交换当前左边指针位置和右边指针位置的元素
5.重复2,3,4步骤,直到左边执政的值大于右边指针的值停止
快速排序的时间复杂度
快速排序的一个切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n)但整个快速排序的时间复杂度和切分的次数相关
最优情况:每次切分的基准数字刚好将当前序列等分
最坏情况:每一个切分选择的基准数字时当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以最坏情况下,快速排序的时间复杂度为O(n^2)
如果我把数组的切分看作是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快速排序的时间复杂度为O(nlong)
最坏情况:每次切分选择的基准数字时当前序列中最大的数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2)
//比较v元素是否小于w元素
private static boolean less(Comparable v,Comparable w){
return v.compareTo(w)<0;
}
//数组元素i和j交换位置
private static void exch(Comparable[] a,int i,int j){
Comparable t=a[i];
a[i]=a[j];
a[j]=t;
}
//对数据a中的数据进行排序
public static void sort(Comparable[] a){
int lo=0;
int hi=a.length-1;
sort(a,lo,hi);
}
//对数据lo中到hi的元素进行排序
private static void sort(Comparable[] a,int lo,int hi){
//安全性校验
if(hi<=lo){
return;
}
//需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组)
int partition=partition(a,lo,hi);//返回的是分组的分界值所在的索引,分界值位置变换后的索引
//让左子组有序
sort(a,lo,partition-1);
//让右子组有序
sort(a,partition+1,hi);
}
//对数据中,从0到mid为一组,从mid+1到hi为一组,对这两组进行归并排序
public static int partition(Comparable[] a,int lo,int hi){
//确定分解值
Comparable key=a[lo];
//定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置
int left=lo;
int right=hi+1;
//切分
while (true){
//先从右往左扫描,移动right指针,找到一个比分界值小的元素停止
while (less(key,a[--right])){
if(right==lo){
break;
}
}
//先从左往左扫描,移动left指针,找到一个比分界值大的元素停止
while (less(a[++left],key)){
if(left==hi){
break;
}
}
//判断left>=right,如果是则证明元素扫描完毕,结束循环,如果不是,则交换元素即可
if(left>=right){
break;
}else{
exch(a,left,right);
}
}
//交叉分界道
exch(a,lo,right);
return right;
}