BZOJ1211 - [HNOI2004]树的计数

Portal

Description

一个有\(n(n\leq150)\)个结点的树,给出每个节点的度数\(d_i\),求满足度数要求的无根树的个数。

Solution

prufer数列_百度百科
简单来说,一棵\(n\)个节点的无根树与一个数值在\([1,n]\)的长度为\(n-2\)的序列一一对应,这个序列便称作prufer数列。其中若点\(i\)的度数为\(d_i\),那么\(i\)在prufer数列中就出现\(d_i-1\)次。
那么这道题就很简单了:向一个长度为\(n-2\)的序列中填入\(d_1-1\)\(1\)\(d_2-1\)\(2\),...,\(d_n-1\)\(n\)
\[\begin{align*} ans &= \binom{n-2}{d_1-1} \binom{n-2-(d_1-1)}{d_2-1} ...\binom{n-2-\sum_{i=1}^{n-1}(d_i-1)}{d_n-1} \\ &= \frac{(n-2)!}{(d_1-1)!(n-2-(d_1-1))!} \cdot \frac{(n-2-(d_1-1))!}{(d_2-1)!(n-2-\sum_{i=1}^2(d_i-1))} ... \frac{(n-2-\sum_{i=1}^{n-1}(d_i-1))!}{(d_n-1)!0!} \\ &= \frac{(n-2)!}{\prod_{i=1}^n (d_i-1)!} \end{align*}\]由于阶乘比较大而且坑爹的不取模,所以通过分解质因数的方法来计算。

时间复杂度\(O(n^2)\)

Code

//[HNOI2004]树的计数
#include <cstdio>
int const N=200;
int n,d[N];
int fac[N][N];
void init()
{
    for(int i=1;i<=n;i++)
    {
        int x=i;
        for(int j=2;j<=n;j++)
            while(x%j==0) fac[i][j]++,x/=j;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++) fac[i][j]+=fac[i-1][j];
}
int ansP[N];
int main()
{
    scanf("%d",&n); init();
    int sum=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&d[i]); sum+=d[i];
        if(d[i]==0&&n!=1) {puts("0"); return 0;}
    }
    if(sum!=n*2-2) {puts("0"); return 0;}
    if(n==1) {puts("1"); return 0;}
    for(int i=1;i<=n;i++) ansP[i]=fac[n-2][i];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++) ansP[j]-=fac[d[i]-1][j];
    long long ans=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=ansP[i];j++) ans*=i;
    printf("%lld\n",ans);
    return 0;
}

P.S.

注意要特判掉无解和\(n=1\)的情况。

转载于:https://www.cnblogs.com/VisJiao/p/BZOJ1211.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整 $n$。 接下来 $n$ 行,每行 $n$ 个整,表示棋盘上每个点的字。 输出格式 输出一个整,表示所有满足条件的路径中,所有点的权值和的最小值。 据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值