洛谷P2522 - [HAOI2011]Problem b

Portal

Description

进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} [gcd(i,j)=d]\)

Solution

莫比乌斯反演入门题。
\(calc(n,m)\)表示\(i\in[1,n],j\in[1,m]\)\(gcd(i,j)=d\)的数对\((i,j)\)的个数。那么简单地进行容斥,可知\(ans=calc(x_2,y_2)-calc(x_1-1,y_2)-calc(x_2,y_1-1)+calc(x_1-1,x_2-1)\)
于是考虑如何计算\(calc(n,m)\)
\[ f(d) = \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \]

\[\begin{align*} F(x) &= \sum_{x|d} f(d) \\ &= \sum_{x|d} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \\ &= \sum_{k=1}^{⌊\frac{n}{x}⌋} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=kx] \\ &= ⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋ \end{align*}\] \(gcd(i,j)=kx \Leftrightarrow x|i\)\(x|j\),那满足条件的\((i,j)\)就有\(⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋\)对。再进行莫比乌斯反演:
\[ f(x)= \sum_{x|d} \mu(\frac{d}{x}) F(d) = \sum_{x|d} \mu(\frac{d}{x})⌊\frac{n}{d}⌋⌊\frac{m}{d}⌋ = \sum_{k=1}^{⌊\frac{n}{x}⌋} \mu(k)⌊\frac{n}{kx}⌋⌊\frac{m}{kx}⌋ \]这个做法看起来是\(O(\dfrac{n}{x})\)的。不过由于\(⌊\dfrac{n}{i}⌋\)最多只有\(\sqrt n\)种取值,所以我们可以以\(O(\sqrt n)\)的复杂度进行计算。

i123456789101112131415
15/i1575332211111111

观察发现,一个取值为\(v\)的区间是以\(⌊\frac{n}{v}⌋\)结尾的,下一个区间是从\(⌊\frac{n}{v}⌋+1\)开始的,模拟这一性质去计算即可。若对于区间\(k\in[L,R]\)\(⌊\frac{n}{kx}⌋=v_1,⌊\frac{m}{kx}⌋=v_2\),那么该区间对答案的贡献为\(v_1v_2\sum_{k=L}^R \mu(k)\),预处理出\(\mu(x)\)的前缀和即可。

时间复杂度\(O(T\sqrt {10^5})\)

Code

//[HAOI2011]Problem b
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
inline char gc()
{
    static char now[1<<16],*s,*t;
    if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
    return *s++;
}
inline int read()
{
    int x=0; char ch=gc();
    while(ch<'0'||'9'<ch) ch=gc();
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x;
}
const int N=5e4+10;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void getMu(int n)
{
    mu[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!notP[i]) pr[++cntP]=i,mu[i]=-1;
        for(int j=1;j<=cntP;j++)
        {
            if((lint)i*pr[j]>n) break;
            int x=i*pr[j]; notP[x]=true;
            if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}
        }
    }
    for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int k;
lint calc(int x,int y)
{
    x/=k,y/=k; if(x>y) swap(x,y);
    lint res=0;
    for(int L=1,R;L<=x;L=R+1)
    {
        int v1=x/L,v2=y/L; R=min(x/v1,y/v2);
        res+=1LL*(pre[R]-pre[L-1])*v1*v2;
    }
    return res;
}
int main()
{
    getMu(5e4);
    int Q=read();
    while(Q--)
    {
        int fr1=read(),to1=read(),fr2=read(),to2=read(); k=read();
        printf("%lld\n",calc(to1,to2)-calc(fr1-1,to2)-calc(to1,fr2-1)+calc(fr1-1,fr2-1));
    }
    return 0;
}

P.S.

同样的题洛谷P2257

转载于:https://www.cnblogs.com/VisJiao/p/LgP2522.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值